Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(16): 3927-3946, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563779

ABSTRACT

Messenger RNA (mRNA) based vaccines have been introduced worldwide to combat the Covid-19 pandemic. These vaccines consist of non-amplifying mRNA formulated in lipid nanoparticles (LNPs). Consequently, LNPs are considered benchmark non-viral carriers for nucleic acid delivery. However, the formulation and manufacturing of these mRNA-LNP nanoparticles are expensive and time-consuming. Therefore, we used self-amplifying mRNA (saRNA) and synthesized novel polymers as alternative non-viral carrier platform to LNPs, which enable a simple, rapid, one-pot formulation of saRNA-polyplexes. Our novel polymer-based carrier platform consists of randomly concatenated ethylenimine and propylenimine comonomers, resulting in linear, poly(ethylenimine-ran-propylenimine) (L-PEIx-ran-PPIy) copolymers with controllable degrees of polymerization. Here we demonstrate in multiple cell lines, that our saRNA-polyplexes show comparable to higher in vitro saRNA transfection efficiencies and higher cell viabilities compared to formulations with Lipofectamine MessengerMAX™ (LFMM), a commercial, lipid-based carrier considered to be the in vitro gold standard carrier. This is especially true for our in vitro best performing saRNA-polyplexes with N/P 5, which are characterised with a size below 100 nm, a positive zeta potential, a near 100% encapsulation efficiency, a high retention capacity and the ability to protect the saRNA from degradation mediated by RNase A. Furthermore, an ex vivo hemolysis assay with pig red blood cells demonstrated that the saRNA-polyplexes exhibit negligible hemolytic activity. Finally, a bioluminescence-based in vivo study was performed over a 35-day period, and showed that the polymers result in a higher and prolonged bioluminescent signal compared to naked saRNA and L-PEI based polyplexes. Moreover, the polymers show different expression profiles compared to those of LNPs, with one of our new polymers (L-PPI250) demonstrating a higher sustained expression for at least 35 days after injection.


Subject(s)
Polyethyleneimine , RNA, Messenger , Transfection , Animals , Transfection/methods , Polyethyleneimine/chemistry , Humans , RNA, Messenger/genetics , Mice , Polypropylenes/chemistry , Polymers/chemistry , Drug Carriers/chemistry , SARS-CoV-2/drug effects , Nanoparticles/chemistry
2.
Biomacromolecules ; 23(6): 2459-2470, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35499242

ABSTRACT

Naturally occurring oligoamines, such as spermine, spermidine, and putrescine, are well-known regulators of gene expression. These oligoamines frequently have short alkyl spacers with varying lengths between the amines. Linear polyethylenimine (PEI) is a polyamine that has been widely applied as a gene vector, with various formulations currently in clinical trials. In order to emulate natural oligoamine gene regulators, linear random copolymers containing both PEI and polypropylenimine (PPI) repeat units were designed as novel gene delivery agents. In general, statistical copolymerization of 2-oxazolines and 2-oxazines leads to the formation of gradient copolymers. In this study, however, we describe for the first time the synthesis of near-ideal random 2-oxazoline/2-oxazine copolymers through careful tuning of the monomer structures and reactivity as well as polymerization conditions. These copolymers were then transformed into near-random PEI-PPI copolymers by controlled side-chain hydrolysis. The prepared PEI-PPI copolymers formed stable polyplexes with GFP-encoding plasmid DNA, as validated by dynamic light scattering. Furthermore, the cytotoxicity and transfection efficiency of polyplexes were evaluated in C2C12 mouse myoblasts. While the polymer chain length did not significantly increase the toxicity, a higher PPI content was associated with increased toxicity and also lowered the amount of polymers needed to achieve efficient transfection. The transfection efficiency was significantly influenced by the degree of polymerization of PEI-PPI, whereby longer polymers resulted in more transfected cells. Copolymers with 60% or lower PPI content exhibited a good balance between high plasmid-DNA transfection efficiency and low toxicity. Interestingly, these novel PEI-PPI copolymers revealed exceptional serum tolerance, whereby transfection efficiencies of up to 53% of transfected cells were achieved even under 50% serum conditions. These copolymers, especially PEI-PPI with DP500 and a 1:1 PEI/PPI ratio, were identified as promising transfection agents for plasmid DNA.


Subject(s)
DNA , Polymers , Animals , Aziridines , DNA/chemistry , Gene Transfer Techniques , Mice , Plasmids/genetics , Polyethyleneimine/chemistry , Polymers/chemistry , Transfection
3.
Dalton Trans ; 50(25): 8746-8751, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34079970

ABSTRACT

The self-assembly of bis-tridentate ligands leads to the spontaneous formation of [2 × 2] grid-like metal complexes. However, the synthesis of such ligands is rather cumbersome. In the work, we demonstrate a straightforward synthesis route to prepare bis-tridentate 4,6-bis((1H-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands through double CuAAC click chemistry with 4,6-bis(6-ethynylpyridin-2-yl)-2-phenylpyrimidine as well as their self-assembly into [2 × 2] grid-like metal complexes. In addition, four macromolecular ligands were synthesized starting from azido-end-functionalized poly(2-ethyl-2-oxazoline) (PEtOx) or poly(ethylene glycol) (PEG). These macromolecular ligands were used in the construction of star-shaped supramolecular polymers through complexation with transition metal ions (e.g., Fe2+ or Zn2+). The successful fabrication of complexes and star-shaped polymers was confirmed by UV-vis titration measurements and MALDI-TOF mass spectrometry. However, the chemical structure of the polymer was found to have a strong influence on the [2 × 2] grid formation, which was successful with the PEG-ligands but not with the PEtOx-ligands, while the molecular weight of the PEG did not interfere with grid formation.

4.
Langmuir ; 34(42): 12653-12663, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30265540

ABSTRACT

The synthesis of a series of dual thermosensitive nonionic-ionic random copolymers with varying compositions by reversible addition-fragmentation chain transfer polymerization is described. These copolymers contain oligo(2-ethyl-2-oxazoline)acrylate (OEtOxA) and either triphenyl-4-vinylbenzylphosphonium chloride ([VBTP][Cl]) or 3- n-butyl-1-vinylimidazolium bromide ([VBuIm][Br]) ionic liquid (IL) units. The copolymers having low content of ionic poly(ionic liquid) (PIL) (P[VBTP][Cl]/P[VBuIm][Br]) segments show only lower critical solution temperature (LCST)-type phase transition with almost linear increase of their cloud points with increasing percentage of ionic PIL segments. Furthermore, LCST-type cloud points ( TcLs) are found very sensitive and tunable with respect to the nature and concentration of halide ions (X- = Cl-, Br-, and I-) and copolymer compositions. However, copolymers with high content of ionic PIL segments show both LCST-type followed by upper critical solution temperature (UCST)-type phase transitions in the presence of halide ions. Dual LCST- and UCST-type phase behaviors are prominent and repeatable for many heating/cooling cycles. Both types of cloud points are found to be sensitive to copolymer compositions, concentration, and nature and concentration of the halide ions. The phase behaviors of both types of copolymers with a very high ionic content (>90%) are exactly similar to that of P[VBTP][Cl] or P[VBuIm][Br] homopolymers showing only UCST-type phase transition in the presence of halide ions. The inherent biocompatibility of the P(OEtOxA) segment along with the interesting dual thermoresponsiveness makes these copolymers highly suitable candidates for biomedical applications including drug delivery.

5.
J Phys Chem B ; 120(4): 813-24, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26735171

ABSTRACT

We report on the synthesis of photocleavable poly(2-ethyl-2-oxazoline)-block-poly(2-nitrobenzyl acrylate) (PEtOx-b-PNBA) block copolymers (BCPs) with varying compositions via combination of microwave-assisted cationic ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP) using α-bromoisobutyryl bromide as an orthogonal initiator. The amphiphilic nature of this BCP causes them to self-assemble into primary micelles in THF/H2O, which further undergo secondary aggregation into nanostructured compound micelles as established through DLS, FESEM, and TEM. Upon UV irradiation (λ = 350 nm), the photocleavage of the PNBA block of the PEtOx-b-PNBA BCP takes place, and that leads to the formation of the doubly hydrophilic poly(2-ethyl-2-oxazoline)-b-poly(acrylic acid) (PEtOx-b-PAA) BCP causing the rupture of compound micelles as confirmed by spectroscopic and microscopic techniques. Encapsulation of a model hydrophobic guest molecule, nile red (NR), into the photocleavable BCP micellar core in aqueous solution and its UV-induced release is also investigated by fluorescence emission measurements. PEtOx-b-PNBA BCP amphiphiles are also shown to self-assemble into spherical nanostructures (∼90 nm) in dichloromethane as established by DLS and TEM analysis. These are referred to as reverse micelles and are able to encapsulate anionic hydrophilic dye, Eosin B, and facilitate its solubilization in organic media.

SELECTION OF CITATIONS
SEARCH DETAIL
...