Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 14453, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198379

ABSTRACT

Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.

2.
ACS Nano ; 9(9): 8967-75, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26302083

ABSTRACT

Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.

3.
Article in English | MEDLINE | ID: mdl-20843735

ABSTRACT

EPR linewidth measurements of 2,N-(4-n-butyl benzilidene) 4-amino 2,2,6,6-tetramethyl piperidine 1-oxide (BBTMPO) in toluene at 1 GHz (L-Band), 4 GHz (S-Band), 9 GHz (X-Band) and 34 GHz (Q-Band) microwave frequencies indicate the presence of a distribution of relaxation times. The empirical response parameter introduced by Cole-Davidson for the analysis of dielectric relaxation in liquids has been used for the analysis of EPR relaxation data in the L-Band and S-Band frequency regions. The Cole-Davidson parameter can assume values in the range 0 < ß ≤ 1. When ß = 1, one obtains the Debye-type spectral density. The calculated linewidth data at 1 GHz and 4 GHz agree with a Cole-Davidson parameter of 0.7 for the spherocone shaped BBMTPO solute. ß < 1 at the L- and S-bands suggests the presence of an asymmetrical distribution of relaxation times associated with different modes of relaxation mechanisms or internal molecular motions. This study shows EPR experiments at low microwave frequencies are more sensitive to the shape of the correlation function. Differences between this study and an earlier study [6] on perdeuterated 2,2,6,6-tetramethly-4-piperidone N oxide (PD-Tempone) in toluene are attributed to the size of and absence of deuteration in the BBTMPO probe.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Toluene/chemistry , Triacetoneamine-N-Oxyl/chemistry , Molecular Probes
SELECTION OF CITATIONS
SEARCH DETAIL
...