Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(17): 4172-4183, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38591253

ABSTRACT

Traumatic hemorrhage is one of the main causes of mortality in civilian and military accidents. This study aimed to evaluate the effectiveness of cuttlefish bone (cuttlebone, CB) and CB loaded with cuttlefish ink (CB-CFI) nanoparticles for hemorrhage control. CB and CB-CFI were prepared and characterized using different methods. The hemostasis behavior of constructed biocomposites was investigated in vitro and in vivo using a rat model. Results showed that CFI nanoparticles (NPs) are uniformly dispersed throughout the CB surface. CB-CFI10 (10 mg CFI in 1.0 g of CB) showed the best blood clotting performance in both in vitro and in vivo tests. In vitro findings revealed that the blood clotting time of CB, CFI, and CB-CFI10 was found to be 275.4 ± 12.4 s, 229.9 ± 19.9 s, and 144.0 ± 17.5 s, respectively. The bleeding time in rat liver injury treated with CB, CFI, and CB-CFI10 was 158.1 ± 9.2 s, 114.0 ± 5.7 s, and 46.8 ± 2.7 s, respectively. CB-CFI10 composite resulted in more reduction of aPTT (11.31 ± 1.51 s) in comparison with CB (17.34 ± 2.12 s) and CFI (16.79 ± 1.46 s) (p < 0.05). Furthermore, CB and CB-CFI10 exhibited excellent hemocompatibility. The CB and CB-CFI did not show any cytotoxicity on human foreskin fibroblast (HFF) cells. The CB-CFI has a negative surface charge and may activate coagulation factors through direct contact with their components, including CaCO3, chitin, and CFI-NPs with blood. Thus, the superior hemostatic potential, low cost, abundant, simple, and time-saving preparation process make CB-CFI a very favorable hemostatic material for traumatic bleeding control in clinical applications.


Subject(s)
Decapodiformes , Hemostatics , Ink , Nanoparticles , Animals , Rats , Hemostatics/chemistry , Hemostatics/pharmacology , Nanoparticles/chemistry , Decapodiformes/chemistry , Hemorrhage/drug therapy , Male , Blood Coagulation/drug effects , Rats, Sprague-Dawley , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Hemostasis/drug effects , Bone and Bones/drug effects , Particle Size
2.
Avicenna J Phytomed ; 13(5): 513-530, 2023.
Article in English | MEDLINE | ID: mdl-38089420

ABSTRACT

Objective: The current study assessed hepatoprotective effects of Sargassum boveanum (S. boveanum) in cholestatic rats. To induce cholestasis, bile duct ligation (BDL) was utilized. Materials and Methods: Five groups of Sprague-Dawley rats including Sham and four BDL groups were assigned to receive vehicle (BDL-V) or ethanolic extract of S. boveanum at 100 (BDL-SE 100), 200 (BDL-SE 200) and 500 (BDL-SE 500) mg/kg/day for seven days. Results: BDL group receiving the vehicle (BDL-V) had substantially increased blood levels of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total, and indirect bilirubin in comparison to the sham group. S. boveanum significantly decreased these variables compared to the BDL-V group. Hepatic malondialdehyde and tumor necrosis factor-α (TNF-α) level, and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and TNF-α gene expression were higher in BDL-V rats compared to the sham group but these were reduced markedly in BDL groups receiving S. boveanum in comparison to the BDL-V group. BDL-V group had a significantly lower hepatic glutathione value, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity and gene expression of SOD, GPx, Nrf2, HO-1 in comparison to the sham group. S. boveanum prevented the decrease of these variables. The histopathological assay showed marked bile ducts proliferation, portal inflammation, and hepatocellular damage in the BDL-V group and S. boveanum administration remarkably reduced hepatic injury. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that S. boveanum ethanolic extract contained 39 active compounds. Conclusion: S. boveanum treatment significantly ameliorated cholestatic hepatic injury via anti-oxidative and anti-inflammatory effects.

3.
Acta Med Iran ; 55(1): 29-34, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28188940

ABSTRACT

 Cirrhosis has been related with hyperdynamic circulation, manifesting as increased cardiac output and decreased systemic vascular resistance. In the present study we examined the cirrhosis outcome on apoptosis of rat hearts. We also tried to explore the role of nitric oxide (NO) and oxidative stress in the probable changed apoptosis of cirrhotic hearts. Twenty eight days after ligation of bile duct, heart tissues were tested for apoptosis. The extent of malondialdehyde (MDA), and the activities of catalase (CAT), glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) have been calculated in heart tissues. The cirrhotic hearts exhibited structural defects and greater apoptosis. Chronic treatment of cirrhotic rats with L-NAME, a non-selective inhibitor of NO synthase, inhibited heart structural defects and reduced apoptosis of hearts. We also showed that cirrhotic rat hearts had an enhanced level of MDA and reduced activities of CAT, GSHPx and SOD. When the animals were treated by L-NAME chronically, the MDA level reduced and activities of CAT, GSHPx and SOD augmented in cirrhotic heart. In conclusion, increased apoptosis of cirrhotic hearts probably happen due to NO overproduction and increased oxidative stress in hearts of cirrhotic rats.


Subject(s)
Apoptosis/physiology , Heart Diseases/pathology , Nitric Oxide/metabolism , Oxidative Stress/physiology , Animals , Catalase/metabolism , Fibrosis/pathology , Glutathione Peroxidase/metabolism , Male , Malondialdehyde/metabolism , Nitric Oxide Synthase/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism
4.
Naunyn Schmiedebergs Arch Pharmacol ; 390(3): 245-252, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27928616

ABSTRACT

Much of the beneficial effects of olive products have been attributed to oleuropein. This study examined the effects of oleuropein in rats with heart failure induced by permanent ligation of left coronary arteries. Twenty-four hours after the operation, the rats were assigned to five groups including a sham assigned to receive vehicle (1 ml/day) and four coronary ligated groups assigned to receive vehicle or oleuropein at 5, 10, or 20 mg/kg/day. Five weeks later, echocardiographic and hemodynamic parameters, serum concentrations of oxidative stress, and inflammatory markers were determined. Myocardial infarction group receiving vehicle showed impaired hemodynamic and echocardiographic parameters as evidenced by decreased left ventricular systolic pressure, rate of rise and decrease of left ventricular pressure, stroke volume, ejection fraction, and cardiac output. In addition, significant reduction in superoxide dismutase and glutathione reductase was observed. Oleuropein treatment prevented the reduction of these variables. Moreover, the group had a significantly higher infarct size and serum malondialdehyde, interleukin-1ß, and tumor necrosis factor-α than those of the sham group. Treatment with oleuropein prevented the increase of these variables. The results show that oleuropein attenuates the progression of heart failure, possibly by antioxidative and antiinflammatory effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Heart Failure/prevention & control , Inflammation Mediators/blood , Iridoids/pharmacology , Myocardial Infarction/drug therapy , Oxidative Stress/drug effects , Animals , Biomarkers/blood , Disease Models, Animal , Disease Progression , Glutathione Reductase/metabolism , Heart Failure/blood , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Hemodynamics/drug effects , Interleukin-1beta/blood , Iridoid Glucosides , Male , Malondialdehyde/blood , Myocardial Infarction/blood , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/blood , Ventricular Function, Left/drug effects
5.
Cardiovasc Toxicol ; 15(1): 61-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25119867

ABSTRACT

Myocardial infarction causes a cascade of events, which leads to heart failure, debilitation and death. This study examined possible cardioprotective effect of oleuropein in rats with acute myocardial infarction. Male Sprague-Dawly rats were allocated to five groups: sham, myocardial infarction receiving vehicle, and three myocardial infarction receiving oleuropein at 10, 20, and 30 mg/kg/day for 7 days, and underwent sham operation or coronary ligation. Twenty-four hours later, animals underwent echocardiographic and hemodynamic studies, and infarct areas, serum concentrations of oxidative stress and inflammatory markers were determined. Myocardial infarction group receiving vehicle had significantly lower left ventricular developed and systolic pressures, rate of rise/decrease of left ventricular pressure, stroke volume, ejection fraction and cardiac output, and serum superoxide dismutase and glutathione reductase than those of sham group. Pretreatment with oleuropein prevented the reduction of these variables. Moreover, the group had a significantly higher serum malondialdehyde, interleukin-1ß, TNF-α, creatin kinase-MB, and troponin I, lactate dehydrogenase, and infarct area than those of sham group. Pretreatment with oleuropein prevented the increase of these variables. The findings indicate that coronary ligation results in acute myocardial infarction characterized by impaired cardiac function, and oleuropein pretreatment prevented cardiac impairment partly by reducing oxidative stress and release of proinflammatory cytokines.


Subject(s)
Cardiotonic Agents/pharmacology , Iridoids/pharmacology , Myocardial Infarction/prevention & control , Vasodilator Agents/pharmacology , Animals , Biomarkers/blood , Creatine Kinase, MB Form/blood , Disease Models, Animal , Electrocardiography , Hemodynamics/drug effects , Interleukin-1beta/blood , Iridoid Glucosides , L-Lactate Dehydrogenase/blood , Male , Malondialdehyde/blood , Myocardial Infarction/blood , Myocardial Infarction/diagnostic imaging , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Troponin I/blood , Tumor Necrosis Factor-alpha/blood , Ultrasonography
6.
Int J Exp Pathol ; 95(1): 78-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24456333

ABSTRACT

The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30 mg/kg) for 7 days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-α), IL-1ß and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-α in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-α.


Subject(s)
Cholestasis/physiopathology , Nitric Oxide/physiology , Stomach Ulcer/prevention & control , Thiazolidinediones/therapeutic use , Tumor Necrosis Factor-alpha/physiology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Ethanol/adverse effects , Interleukin-1beta/physiology , Male , Pioglitazone , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/physiopathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...