Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 137(18): 184505, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23163381

ABSTRACT

The microscopic structure of fluids of simple spheres is well known. However, the constituents of most real-life fluids are non-spherical, leading to a coupling between the rotational and translational degrees of freedom. The structure of simple dense fluids of spheroids - ellipsoids of revolution - was only recently determined by direct experimental techniques [A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, Phys. Rev. Lett. 107, 238301 (2011)]. Using confocal microscopy, it was demonstrated that the structure of these simple fluids cannot be described by hard particle models based on the widely used Percus-Yevick approximation. In this paper, we describe a new protocol for determining the shape of the experimental spheroids, which allows us to expand our previous microscopy measurements of these fluids. To avoid the approximations in the theoretical approach, we have also used molecular dynamics simulations to reproduce the experimental radial distribution functions g(r) and estimate the contribution of charge effects to the interactions. Accounting for these charge effects within the Percus-Yevick framework leads to similar agreement with the experiment.


Subject(s)
Molecular Dynamics Simulation , Phosmet/chemistry , Quantum Theory , Colloids/chemistry , Molecular Structure , Particle Size , Surface Properties
2.
Phys Rev Lett ; 107(23): 238301, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182131

ABSTRACT

A fluid of spheroids, ellipsoids of revolution, is among the simplest models of the disordered matter, where positional and rotational degrees of freedom of the constituent particles are coupled. However, while highly anisometric rods, and hard spheres, were intensively studied in the last decades, the structure of a fluid of spheroids is still unknown. We reconstruct the structure of a simple fluid of spheroids, employing direct confocal imaging of colloids, in three dimensions. The ratio t between the polar axis and the equatorial diameter for both our prolate and oblate spheroids is not far from unity, which gives rise to a delicate interplay between rotations and translations. Strikingly, the measured positional interparticle correlations are significantly stronger than theoretically predicted, indicating that further theoretical attention is required, to fully understand the coupling between translations and rotations in these fundamental fluids.

SELECTION OF CITATIONS
SEARCH DETAIL
...