Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645163

ABSTRACT

The enteric nervous system (ENS) is contained within two layers of the gut wall and is made up of neurons, immune cells, and enteric glia cells (EGCs) that regulate gastrointestinal (GI) function. EGCs in both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) change in response to inflammation, referred to as reactive gliosis. Whether EGCs restricted to a specific layer or region within the GI tract alone can influence intestinal immune response is unknown. Using bulk RNA-sequencing and in situ hybridization, we identify G-protein coupled receptor Gpr37 , as a gene expressed only in EGCs of the myenteric plexus, one of the two layers of the ENS. We show that Gpr37 contributes to key components of LPS-induced reactive gliosis including activation of NF-kB and IFN-y signaling and response genes, lymphocyte recruitment, and inflammation-induced GI dysmotility. Targeting Gpr37 in EGCs presents a potential avenue for modifying inflammatory processes in the ENS.

2.
J Neuroinflammation ; 20(1): 291, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057803

ABSTRACT

Current effective therapies for autoimmune diseases rely on systemic immunomodulation that broadly affects all T and/or B cell responses. An ideal therapeutic approach would combine autoantigen-specific targeting of both T and B cell effector functions, including efficient removal of pathogenic autoantibodies. Albeit multiple strategies to induce T cell tolerance in an autoantigen-specific manner have been proposed, therapeutic removal of autoantibodies remains a significant challenge. Here, we devised an approach to target both autoantigen-specific T cells and autoantibodies by producing a central nervous system (CNS) autoantigen myelin oligodendrocyte glycoprotein (MOG)-Fc fusion protein. We demonstrate that MOG-Fc fusion protein has significantly higher bioavailability than monomeric MOG and is efficient in clearing anti-MOG autoantibodies from circulation. We also show that MOG-Fc promotes T cell tolerance and protects mice from MOG-induced autoimmune encephalomyelitis. This multipronged targeting approach may be therapeutically advantageous in the treatment of autoimmunity.


Subject(s)
Autoantibodies , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , T-Lymphocytes , Myelin-Associated Glycoprotein , Encephalomyelitis, Autoimmune, Experimental/pathology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Autoantigens
3.
Cancer Immunol Immunother ; 72(1): 265-273, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35802166

ABSTRACT

The gut microbiota has not only been implicated in the development of some cancers but has also been shown to modulate the efficacy of cancer therapeutics. Although the microbiota is an attractive target in cancer therapy, there is limited data available regarding the relevance of microbiota and dietary interventions in the various types of tumors. Recently, a high salt diet (HSD) has attracted attention in cancer development owing to its profound effects on modulating microbiota and immune responses. Here, we investigated the impact of HSD on microbiota, immune responses, and the development of acute myeloid leukemia using two syngeneic transplantation models. HSD significantly changes the microbiota composition, TH17 responses, and NK cells. However, we found no influence of HSD on tumor development. The kinetics and characteristics of tumor development were similar despite varying the number of injected tumor cells. Our data show that the effects of the microbiome and dietary interventions can be tumor-specific and may not apply to all types of cancers.


Subject(s)
Gastrointestinal Microbiome , Leukemia, Myeloid, Acute , Microbiota , Mice , Animals , Diet , Leukemia, Myeloid, Acute/therapy
4.
PLoS One ; 17(4): e0266589, 2022.
Article in English | MEDLINE | ID: mdl-35385550

ABSTRACT

T cells express co-receptors CD4 and CD8, which are involved in the recognition of antigen presented to T cell receptors. The expression of CD4 in thymic hematopoietic cells is crucial for the thymic development and selection of T cells. In this study, we identified a novel CD4 mutant allele that emerged spontaneously in our mouse colony. The frameshift mutation led to a truncated CD4 protein which failed to reach the plasma membrane resulting in impaired development of CD4+ helper T cells. The CRISPR mediated correction of mutant allele restored the membrane CD4 expression. Further, using an adoptive transfer of T cells, we show that this model is an ideal recipient mouse for the study of CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes , Frameshift Mutation , Adoptive Transfer , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD8-Positive T-Lymphocytes , Mice , Mice, Knockout , Thymus Gland
5.
Brain Behav Immun ; 95: 489-501, 2021 07.
Article in English | MEDLINE | ID: mdl-33872708

ABSTRACT

Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1ß (IL-1ß) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1ß, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1ß. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1ß. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1ß-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1ß was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1ß production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1ß. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.


Subject(s)
CD36 Antigens/metabolism , Inflammasomes , Microglia , Animals , Caspase 1 , Endothelium , Interleukin-1beta , Mice , Mice, Inbred C57BL
6.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723078

ABSTRACT

Sodium chloride, "salt," is an essential component of daily food and vitally contributes to the body's homeostasis. However, excessive salt intake has often been held responsible for numerous health risks associated with the cardiovascular system and kidney. Recent reports linked a high-salt diet (HSD) to the exacerbation of artificially induced central nervous system (CNS) autoimmune pathology through changes in microbiota and enhanced TH17 cell differentiation [M. Kleinewietfeld et al., Nature 496, 518-522 (2013); C. Wu et al., Nature 496, 513-517 (2013); N. Wilck et al., Nature 551, 585-589 (2017)]. However, there is no evidence that dietary salt promotes or worsens a spontaneous autoimmune disease. Here we show that HSD suppresses autoimmune disease development in a mouse model of spontaneous CNS autoimmunity. We found that HSD consumption increased the circulating serum levels of the glucocorticoid hormone corticosterone. Corticosterone enhanced the expression of tight junction molecules on the brain endothelial cells and promoted the tightening of the blood-brain barrier (BBB) thereby controlling the entry of inflammatory T cells into the CNS. Our results demonstrate the multifaceted and potentially beneficial effects of moderately increased salt consumption in CNS autoimmunity.


Subject(s)
Blood-Brain Barrier/metabolism , Demyelinating Autoimmune Diseases, CNS/etiology , Demyelinating Autoimmune Diseases, CNS/metabolism , Sodium Chloride, Dietary/metabolism , Animals , Autoimmunity , Brain/immunology , Brain/metabolism , Brain/pathology , Demyelinating Autoimmune Diseases, CNS/pathology , Diet , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Gene Expression Profiling , Mice , Mice, Transgenic , Permeability , Transcriptome
7.
Front Immunol ; 9: 2067, 2018.
Article in English | MEDLINE | ID: mdl-30254641

ABSTRACT

Commensal gut microbiota exerts multifarious effects on intestinal and extra-intestinal immune homeostasis. A disruption in the microbial composition of the gut has been associated with many neurological disorders with inflammatory components. Here we review known associations between gut microbiota and neurological disorders. Further we highlight the emerging role of diet and microbiota interrelationship in regulating neuroinflammation.


Subject(s)
Diet , Gastrointestinal Microbiome/immunology , Nervous System Diseases , Animals , Humans , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Nervous System Diseases/immunology , Nervous System Diseases/microbiology , Nervous System Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...