Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 96(1): 97-103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38172213

ABSTRACT

BACKGROUND: Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin. METHODS: Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined. RESULTS: Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04). CONCLUSION: Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin. IMPACT: This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts. This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.


Subject(s)
Bilirubin , Cerebellum , Choline , Neurons , Bilirubin/pharmacology , Bilirubin/metabolism , Choline/metabolism , Neurons/drug effects , Neurons/metabolism , Cerebellum/drug effects , Cerebellum/cytology , Animals , Phosphorylation , Cells, Cultured , Membrane Microdomains/metabolism , Membrane Microdomains/drug effects , Dietary Supplements , Neural Cell Adhesion Molecule L1/metabolism , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Humans , Neurites/drug effects , Neurites/metabolism
2.
Respir Physiol Neurobiol ; 311: 104040, 2023 05.
Article in English | MEDLINE | ID: mdl-36842727

ABSTRACT

Fetal alcohol spectrum disorder (FASD) has been linked to numerous poor neurological outcomes as well as impairments in respiratory neural control. Females are known to metabolize ethanol (EtOH) differently than males suggesting a sexual dimorphic sensitivity to EtOH exposure. We used a rodent model of FASD to investigate whether EtOH disrupts respiratory neural control. Rat pups received a single intraperitoneal injection of 2 different doses (0.8 mg/g or 4.4 mg/g) of EtOH. Whole-body plethysmography was used ∼24 h later to assess ventilatory responses to acute hypoxia (HVR) and hypercapnia (HCVR). Females treated with 4.4 mg/g of EtOH exhibited an attenuated HVR and HCVR, but there was no effect on males, and no effect of 0.8 mg/g on either sex. There was unexpected mortality of unknown causes, especially in females, that occurred 2-3 days after EtOH administration. These data suggest that important ventilatory defense responses in females are impaired following developmental EtOH exposure, and this may be associated with increased risk of later death.


Subject(s)
Fetal Alcohol Spectrum Disorders , Pregnancy , Male , Humans , Female , Rats , Animals , Rodentia , Ethanol/toxicity , Hypercapnia/chemically induced , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...