Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023900

ABSTRACT

Human serum albumin (HSA) is a protein that transports neutral and acid ligands in the organism. Depending on the environment's pH conditions, HSA can take one of the five isomeric forms that change its conformation. HSA can form aggregates resembling those in vitro formed from amyloid at physiological pH (neutral and acidic). Not surprisingly, the main goal of the research was aggregation/fibrillation of HSA, the study of the physicochemical properties of formed amyloid fibrils using thioflavin T (ThT) and the analysis of ligand binding to aggregated/fibrillated albumin in the presence of dansyl-l-glutamine (dGlu), dansyl-l-proline (dPro), phenylbutazone (Phb) and ketoprofen (Ket). Solutions of human serum albumin, both non-modified and modified, were examined with the use of fluorescence, absorption and circular dichroism (CD) spectroscopy. The experiments conducted allowed observation of changes in the structure of incubated HSA (HSAINC) in relation to nonmodified HSA (HSAFR). The formed aggregates/fibrillation differed in structure from HSA monomers and dimers. Based on CD spectroscopy, previously absent ßstructural constructs have been registered. Whereas, using fluorescence spectroscopy, the association constants differing for fresh and incubated HSA solutions in the presence of dansyl-amino acids and markers for binding sites were calculated and allowed observation of the conformational changes in HSA molecule.


Subject(s)
Amyloid/chemistry , Dansyl Compounds/metabolism , Ketoprofen/metabolism , Phenylbutazone/metabolism , Proline/analogs & derivatives , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Binding Sites , Fluorescence , Humans , Kinetics , Ligands , Prohibitins , Proline/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...