Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 368(11)2021 06 16.
Article in English | MEDLINE | ID: mdl-34086864

ABSTRACT

Artisanal products support the conservation of the indigenous biodiversity of food microbiomes, although they do not always comply to quality and hygienic requirements for the dairy industry. This study describes the development of an autochthonous starter culture to produce Matsoni, a traditional Georgian fermented milk. To this end, strains of lactic acid bacteria isolated from artisanal Matsoni samples were used to design a starter formulation reproducing the dominant microbial diversity, also preserving quality characteristics and ensuring the safety of the product. As a result, strains that represent the acidifying portion of the starter (Lactobacillus delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus) were combined in different ratios and strain combinations, together with cultures of Lactobacillus rhamnosus that were chosen for their potential beneficial traits. The strain association acting better in milk cultures at laboratory scale was selected as starter culture for the production of Matsoni in pilot-scale industrial trials.


Subject(s)
Cultured Milk Products/microbiology , Cultured Milk Products/analysis , Fermentation , Food Microbiology , Georgia (Republic) , Hydrogen-Ion Concentration , Lactobacillales/classification , Lactobacillales/growth & development , Lactobacillales/isolation & purification , Lactobacillales/metabolism , Probiotics , Taste
2.
BMC Genomics ; 22(1): 101, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33535965

ABSTRACT

BACKGROUND: With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. RESULTS: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. CONCLUSIONS: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.


Subject(s)
Biological Evolution , Polymorphism, Single Nucleotide , Animals , Bees/genetics , Europe , Genotype , Geography
3.
Animals (Basel) ; 10(2)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054081

ABSTRACT

Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.

4.
Probiotics Antimicrob Proteins ; 10(4): 638-646, 2018 12.
Article in English | MEDLINE | ID: mdl-29297160

ABSTRACT

The purpose of this article is to reveal the role of the lactic acid bacteria (LAB) in the beebread transformation/preservation, biochemical properties of 25 honeybee endogenous LAB strains, particularly: antifungal, proteolytic, and amylolytic activities putatively expressed in the beebread environment have been studied. Seventeen fungal strains isolated from beebread samples were identified and checked for their ability to grow on simulated beebread substrate (SBS) and then used to study mycotic propagation in the presence of LAB. Fungal strains identified as Aspergillus niger (Po1), Candida sp. (BB01), and Z. rouxii (BB02) were able to grow on SBS. Their growth was partly inhibited when co-cultured with the endogenous honeybee LAB strains studied. No proteolytic or amylolytic activities of the studied LAB were detected using pollen, casein starch based media as substrates. These findings suggest that some honeybee LAB symbionts are involved in maintaining a safe microbiological state in the host honeybee colonies by inhibiting beebread mycotic contaminations, starch, and protein predigestion in beebread by LAB is less probable. Honeybee endogenous LAB use pollen as a growth substrate and in the same time restricts fungal propagation, thus showing host beneficial action preserving larval food. This study also can have an impact on development of novel methods of pollen preservation and its processing as a food ingredient.


Subject(s)
Bees/microbiology , Fungi/isolation & purification , Lactobacillales/physiology , Animals , Antibiosis , Fungi/classification , Fungi/growth & development , Fungi/physiology , Lactobacillales/genetics , Symbiosis
5.
J Econ Entomol ; 109(3): 1474-1477, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-27063842

ABSTRACT

Honey bees are highly important pollinators in agroecosystems, but they are currently under growing environmental pressures (e.g., from pesticides, poor nutrition, and parasites). Due to the multiplicity of environmental stress factors, their protection requires diverse and integrative approaches. Among those is the development of immunomodulatory tools, as immunosuppression is often observed in stressed bees. Toward this goal, the use of exogenous bacteria with immunomodulatory potential has recently been investigated, but knowledge about the potential of honey bee endogenous bacteria is limited. We therefore tested the influence of single strains of five species of endogenous lactic acid bacteria strains on the bee immune system during the larval stage. We measured the expression level of seven immune-related genes and the gene encoding the storage protein Hexamerin 70b. Two of the strains induced an immune stimulation, but this was limited to the antimicrobial peptide Apidaecin1. Upregulation of Apidaecin1 was associated to the downregulation of Hexamerin 70b. Those results suggest that the bee response to endogenous bacteria is specific both at the species and immune levels. As immune responses are costly, this specificity may be adaptive for saving energy and avoiding any negative side effects on the host development or survival. Further screening of bacteria immunomodulatory potential is needed, but associated immune cost needs to be taken into account for improving honey bee resilience to environmental stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...