Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Sports Med ; 28(4): 460-5, 2000.
Article in English | MEDLINE | ID: mdl-10921635

ABSTRACT

Ten knees were studied using a robotic testing system under a 134-N posterior tibial load at five flexion angles. Three knee positions were used to study the effect of flexion angle at the time of graft fixation (full extension, 60 degrees, and 90 degrees) and two were used to study the effect of anterior tibial load (60 degrees and 90 degrees). Knee kinematics and in situ forces were determined for the intact ligament and the graft for each reconstruction. Graft fixation at full extension significantly decreased posterior tibial translation compared with the intact knee by up to 2.9 +/- 2.9 mm at 30 degrees, while in situ forces in the graft were up to 18 +/- 35 N greater than for the intact ligament. Conversely, posterior tibial translation for graft fixation at 90 degrees was significantly greater than that of the intact knee by up to 2.2 +/- 1.1 mm at all flexion angles; in situ forces decreased as much as 33 +/- 30 N. When an anterior tibial load was applied before graft fixation at 90 degrees of flexion, posterior tibial translation did not differ from the intact knee from 30 degrees to 120 degrees, while the in situ force in the graft did not differ from the intact ligament at full extension, 60 degrees, and 120 degrees of flexion. These data suggest that graft fixation at full extension may overconstrain the knee and elevate in situ graft forces. Conversely, fixation with the knee in flexion and an anterior tibial load best restored intact knee biomechanics.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament/surgery , Plastic Surgery Procedures , Tibia/physiology , Adult , Aged , Biomechanical Phenomena , Cadaver , Female , Graft Survival , Humans , Knee Injuries/pathology , Knee Injuries/surgery , Knee Joint/physiology , Male , Middle Aged , Range of Motion, Articular , Weight-Bearing
2.
J Orthop Res ; 18(2): 176-82, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10815816

ABSTRACT

Measurements of tibial translation in response to an external load are used in clinical and laboratory settings to diagnose and characterize knee-ligament injuries. Before these measurements can be quantified, a reference position of the knee must be established (defined as the position of the knee with no external forces or moments applied). The objective of this study was to determine the effects of cruciate ligament deficiency on this reference position and on subsequent measurements of tibial translation and, in so doing, to establish a standard of kinematic measurement for future biomechanical studies. Thirty-six human cadaveric knees were studied with a robotic/universal force-moment sensor testing system. The reference positions of the intact and posterior cruciate ligament-deficient knees of 18 specimens were determined at full extension and at 30, 60, 90, and 120 degrees of flexion, and the remaining five-degree-of-freedom knee motion was unrestricted. Subsequently, under a 134-N anterior-posterior load, the resulting knee kinematics were measured with respect to the reference positions of the intact and posterior cruciate ligament-deficient knees. With posterior cruciate ligament deficiency, the reference position of the knee moved significantly in the posterior direction, reaching a maximal shift of 9.3 +/- 3.8 mm at 90 degrees of flexion. For the posterior cruciate ligament-deficient knee, posterior tibial translation ranged from 13.0 +/- 3.4 to 17.7 +/- 3.6 mm at 30 and 90 degrees, respectively, when measured with respect to the reference positions of the intact knee. When measured with respect to the reference positions of the posterior cruciate ligament-deficient knee, these values were significantly lower, ranging from 11.7 +/- 4.3 mm at 30 degrees of knee flexion to 8.4 +/- 4.8 mm at 90 degrees. A similar protocol was performed to study the effects of anterior cruciate ligament deficiency on 18 additional knees. With anterior cruciate ligament deficiency, only a very small anterior shift in the reference position was observed. Overall, this shift did not significantly affect measurements of tibial translation in the anterior cruciate ligament-deficient knee. Thus, when the tibial translation in the posterior cruciate ligament-injured knee is measured when the reference position of the intact knee is not available, errors can occur and the measurement may not completely reflect the significance of posterior cruciate ligament deficiency. However, there should be less corresponding error when measuring the tibial translation of the anterior cruciate ligament-injured knee because the shift in reference position with anterior cruciate ligament deficiency is too small to be significant. We therefore recommend that in the clinical setting, where the reference position of the knee changes with injury, comparison of total anterior-posterior translation with that of the uninjured knee can be a more reproducible and accurate measurement for assessing cruciate-ligament injury, especially in posterior cruciate ligament-injured knees. Similarly, in biomechanical testing where tibial translations are often reported for the ligament-deficient and reconstructed knees, a fixed reference position should be chosen when measuring knee kinematics. If such a standard is set, measurements of knee kinematics will more accurately reflect the altered condition of the knee and allow valid comparisons between studies.


Subject(s)
Anterior Cruciate Ligament Injuries , Posterior Cruciate Ligament/injuries , Tibia/physiopathology , Humans
3.
Am J Sports Med ; 28(2): 144-51, 2000.
Article in English | MEDLINE | ID: mdl-10750988

ABSTRACT

The objective of this study was to experimentally evaluate a single-bundle versus a double-bundle posterior cruciate ligament reconstruction by comparing the resulting knee biomechanics with those of the intact knee. Ten human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. The knees were subjected to a 134-N posterior tibial load at five flexion angles. Three knee conditions were tested: 1) intact knee, 2) single-bundle reconstruction, and 3) double-bundle reconstruction. Posterior tibial translation of the intact knee ranged from 4.9 +/- 2.7 mm at 90 degrees to 7.2 +/- 1.5 mm at full extension. After the single-bundle reconstruction, posterior tibial translation increased to 7.3 +/- 3.9 mm and 9.2 +/- 2.8 mm at 90 degrees and full extension, respectively, while the corresponding in situ forces in the graft were up to 44 +/- 19 N lower than those in the intact ligament. Conversely, with double-bundle reconstruction, the posterior tibial translation did not differ significantly from the intact knee at any flexion angle tested. This reconstruction also restored in situ forces more closely than did the single-bundle reconstruction. These data suggest that a double-bundle posterior cruciate ligament reconstruction can more closely restore the biomechanics of the intact knee than can the single-bundle reconstruction throughout the range of knee flexion.


Subject(s)
Knee Injuries/surgery , Orthopedic Procedures , Plastic Surgery Procedures , Posterior Cruciate Ligament/injuries , Posterior Cruciate Ligament/surgery , Adult , Aged , Biomechanical Phenomena , Humans , Knee Injuries/physiopathology , Middle Aged , Rupture , Tibia/physiopathology
4.
Am J Sports Med ; 27(4): 533-43, 1999.
Article in English | MEDLINE | ID: mdl-10424228

ABSTRACT

Significant advances have been made during the past 25 years in characterizing the properties of ligaments as a tissue and as an individual component in the bone-ligament-bone complex. The contribution of ligaments to joint function have also been well characterized. We have presented many studies that sought to characterize the tensile and viscoelastic properties of ligaments. As a result of these investigations, some of the most important experimental and biologic factors affecting the measurements of these properties have been identified and elucidated. The identification of the tensile properties of normal ligaments can serve as the basis for evaluating their success in healing and repair after injury. Furthermore, characterization of normal ligament function is crucial for diagnosing joint injuries as well as for evaluating reconstruction strategies and developing rehabilitation protocols. The recent introduction of robotic technology to the study of joint kinematics has resulted in significant advances in the understanding of the relative importance of ligaments to joint function. With the more accurate simulation of joint kinematics that include multiple degrees of freedom motion, data on the in situ forces in ligaments can be used to improve the treatment of ligament repair and reconstruction. More complex external loading conditions that mimic sports activities and rehabilitation protocols can also be introduced in the future. Furthermore, this technology can be extended to study other frequently injured joints, such as the shoulder.


Subject(s)
Knee Joint/physiology , Ligaments, Articular/physiology , Animals , Biomechanical Phenomena , Elasticity , Exercise/physiology , Humans , Ligaments, Articular/anatomy & histology , Medial Collateral Ligament, Knee/physiology , Range of Motion, Articular , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...