Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
R Soc Open Sci ; 10(4): 230034, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37122945

ABSTRACT

Visual stimuli can elicit instinctive approach and avoidance behaviours. In mouse, vision is known to be important for both avoidance of an overhead threat and approach toward a potential terrestrial prey. The stimuli used to characterize these behaviours, however, vary in both spatial location (overhead or near the ground plane) and visual feature (rapidly expanding disc or slowly moving disc). We therefore asked how mice responded to the same visual features presented in each location. We found that a looming black disc induced escape behaviour when presented overhead or to the side of the animal, but the escapes produced by side-looms were less vigorous and often preceded by freezing behaviour. Similarly, small moving discs induced freezing behaviour when presented overhead or to the side of the animal, but side sweeps also elicited approach behaviours, such that mice explored the area of the arena near where the stimulus had been presented. Our observations therefore show that mice combine cues to the location and features of visual stimuli when selecting among potential behaviours.

2.
J Cereb Blood Flow Metab ; 42(10): 1797-1812, 2022 10.
Article in English | MEDLINE | ID: mdl-35751367

ABSTRACT

Brain perivascular macrophages (PVMs) are border-associated macrophages situated along blood vessels in the Virchow-Robin space and are thus found at a unique anatomical position between the endothelium and the parenchyma. Owing to their location and phagocytic capabilities, PVMs are regarded as important components that regulate various aspects of brain physiology in health and pathophysiological states. Here, we used LYVE-1 to identify PVMs in the mouse brain using brain-tissue sections and cleared whole-brains to learn about how they are distributed within the brain and across different developmental postnatal stages. We find that LYVE-1+ PVMs associate with the vasculature in different patterns and proportions depending on vessel diameter or arterio-venous differentiation. LYVE-1+ PVMs relate to blood vessels in a brain-region-dependent manner. We show that their postnatal distribution is developmentally dynamic and peaks at P10-P20 depending on the brain region. We further demonstrate that their density is reduced in the APP/PS1 mouse model of Alzheimer's Disease proportionally to beta-amyloid deposits. In conclusion, our results reveal unexpected heterogeneity and dynamics of LYVE-1+ PVMs, with selective coverage of brain vasculature, compatible with potential unexplored roles for this population of PVMs in postnatal development, and in regulating brain functions in steady-state and disease conditions.


Subject(s)
Alzheimer Disease , Macrophages , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Disease Models, Animal , Macrophages/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL