Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 24(14): 2000-8, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20552699

ABSTRACT

Binary chalcogenide As-Se glasses and their thin films are important for optics, computers, materials science and technological applications. To increase understanding of the properties of thin films fabricated by plasma deposition techniques, more information concerning the physics of plasma plume is needed. In this study the formation of clusters in plasma plume from different As-Se glasses by laser desorption ionization (LDI) or laser ablation (LA) was studied by time-of-flight mass spectrometry (TOF MS) in positive and negative ion modes. Formation of a number of As(p)Se(q) singly charged clusters As(3)Se(q)(+) (q = 1-5), AsSe(q)(-) (q = 1-3), As(2)Se(q)(-) (q = 2-4), and As(3)Se(q)(-) (q = 2-5) was found from As-Se glasses with the molar ratio As:Se in the range from 1:2 to 7:3. The stoichiometry of the As(p)Se(q) clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is proposed and the relationship to the structure of the parent glasses, as also suggested by Raman scattering spectra, is discussed.

2.
Rapid Commun Mass Spectrom ; 24(1): 95-102, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19960499

ABSTRACT

Ternary chalcogenide As-S-Se glasses, important for optics, computers, material science and technological applications, are often made by pulsed laser deposition (PLD) technology but the plasma composition formed during the process is mostly unknown. Therefore, the formation of clusters in a plasma plume from different glasses was followed by laser desorption ionization (LDI) or laser ablation (LA) time-of-flight mass spectrometry (TOF MS) in positive and negative ion modes. The LA of glasses of different composition leads to the formation of a number of binary As(p)S(q), As(p)Se(r) and ternary As(p)S(q)Se(r) singly charged clusters. Series of clusters with the ratio As:chalcogen = 3:3 (As(3)S(3)(+), As(3)S(2)Se(+), As(3)SSe(2)(+)), 3:4 (As(3)S(4)(+), As(3)S(3)Se(+), As(3)S(2)Se(2)(+), As(3)SSe(3)(+), As(3)Se(4)(+)), 3:1 (As(3)S(+), As(3)Se(+)), and 3:2 (As(3)S(2)(+), As(3)SSe(+), As(3)Se(2)(+)), formed from both bulk and PLD-deposited nano-layer glass, were detected. The stoichiometry of the As(p)S(q)Se(r) clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is discussed.


Subject(s)
Arsenicals/chemistry , Glass/analysis , Glass/chemistry , Lasers , Selenium/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sulfides/chemistry , Arsenicals/analysis , Arsenicals/radiation effects , Selenium/analysis , Selenium/radiation effects , Sulfides/analysis , Sulfides/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...