Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(8)2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30060555

ABSTRACT

We present a proof of principle experiment on single-shot near edge soft X-ray fine structure (NEXAFS) spectroscopy with the use of a laboratory laser-plasma light source. The source is based on a plasma created as a result of the interaction of a nanosecond laser pulse with a double stream gas puff target. The laser-plasma source was optimized for efficient soft X-ray (SXR) emission from the krypton/helium target in the wavelength range from 2 nm to 5 nm. This emission was used to acquire simultaneously emission and absorption spectra of soft X-ray light from the source and from the investigated sample using a grazing incidence grating spectrometer. NEXAFS measurements in a transmission mode revealed the spectral features near the carbon K-α absorption edge of thin polyethylene terephthalate (PET) film and L-ascorbic acid in a single-shot. From these features, the composition of the PET sample was successfully obtained. The NEXAFS spectrum of the L-ascorbic acid obtained in a single-shot exposure was also compared to the spectrum obtained a multi-shot exposure and to numerical simulations showing good agreement. In the paper, the detailed information about the source, the spectroscopy system, the absorption spectra measurements and the results of the studies are presented and discussed.

2.
Opt Express ; 26(7): 8260-8274, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715795

ABSTRACT

We present a compact laboratory system for near edge soft X-ray fine structure (NEXAFS) spectroscopy that was developed using a laser-plasma light source. The source is based on a double stream gas puff target. The plasma is formed by the interaction of a laser beam with the double stream gas puff target approach. The laser plasma source was optimized for efficient soft X-ray emission from a krypton/helium target in the range of 1.5 to 5 nm wavelength. This emission is used to acquire simultaneously the emission and absorption spectra of soft X-ray light from the source and from the investigated sample using a grazing incidence spectrometer. The measurements in the transmission mode reveal the features near the carbon K-α absorption edge of thin PET film. From those features, the composition of the sample was successfully obtained. The data are in agreement with synchrotron measurements. In the paper, the detailed information about the source, its optimization, the system, spectral measurements and the results are presented and discussed.

3.
Microsc Microanal ; 21(5): 1214-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26373378

ABSTRACT

Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.


Subject(s)
Biology/methods , Microscopy/instrumentation , Microscopy/methods , Nanotechnology/methods , Animals , Carbon , Carcinoma/pathology , Colonic Neoplasms/pathology , Fibroblasts/cytology , Image Processing, Computer-Assisted , Mice , Water , X-Rays
4.
Coll Antropol ; 36(3): 801-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23213936

ABSTRACT

The aim of this study is to compare two different methods of frontal bone surface model acquisition. Three dimensional models acquired by laser scanning were compared with models of the same bones acquired by virtual replicas reconstructed from a sequence of computed tomography (CT) images. The influence of volumetric CT data processing (namely thresholding), which immediately preceded the generation of the three-dimensional surface model, was also considered and explored in detail in one sample. Despite identifying certain areas where both models showed deviations across all samples, their conformity can be generally classified as satisfactory, and the differences can be regarded as minimal. The average deviation of registered surface models was 0.27 mm for 90% of the data, and its value was therefore very close to the resolution of the laser scanner used.


Subject(s)
Frontal Bone/anatomy & histology , Frontal Bone/diagnostic imaging , Imaging, Three-Dimensional/standards , Models, Anatomic , Tomography, X-Ray Computed/standards , Anthropology, Physical/instrumentation , Humans , Imaging, Three-Dimensional/methods , Lasers , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...