Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 27(8): 2109-2123, 2018 04.
Article in English | MEDLINE | ID: mdl-29603484

ABSTRACT

The African parasitoid wasp Cotesia sesamiae is a generalist species structured in locally adapted populations showing differences in host range. The recent discovery of Cotesia typhae, a specialist, sister species to C. sesamiae, provides a good framework to study the genetic determinants of parasitoid host range. To investigate the genomic bases of divergence between these populations and species, we used a targeted sequencing approach on 24 samples. We targeted the bracovirus genomic region encoding virulence genes involved in the interaction with the lepidopteran hosts of the wasps. High sequencing coverage was obtained for all samples, allowing the study of genetic variation between wasp populations and species. By combining population genetic estimations, such as nucleotide diversity (π), relative differentiation (FST ) and absolute divergence (dxy ), with branch-site dN/dS measures, we identified six of 98 bracovirus genes showing significant divergence and evidence of positive selection. These genes, belonging to different gene families, are potentially involved in host adaptation and in the specialization process. Fine-scale analyses of genetic variation also revealed mutations and large deletions in certain genes inducing pseudogenization and loss of function. The image emerging from these results is that adaptation mediated by bracovirus genes happens through selection of particularly adaptive alleles and loss of nonadaptive genes. These results highlight the central role of the bracovirus in the molecular interactions between the wasps and their hosts and in the evolutionary processes of specialization.


Subject(s)
Host-Parasite Interactions/genetics , Hymenoptera/genetics , Polydnaviridae/genetics , Adaptation, Physiological/genetics , Animals , Genome/genetics , High-Throughput Nucleotide Sequencing , Hymenoptera/growth & development , Hymenoptera/virology , Polydnaviridae/pathogenicity
2.
Evol Appl ; 8(8): 807-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366198

ABSTRACT

To develop efficient and safe biological control, we need to reliably identify natural enemy species, determine their host range, and understand the mechanisms that drive host range evolution. We investigated these points in Cotesia sesamiae, an African parasitic wasp of cereal stem borers. Phylogenetic analyses of 74 individual wasps, based on six mitochondrial and nuclear genes, revealed three lineages. We then investigated the ecological status (host plant and host insect ranges in the field, and host insect suitability tests) and the biological status (cross-mating tests) of the three lineages. We found that one highly supported lineage showed all the hallmarks of a cryptic species. It is associated with one host insect, Sesamia nonagrioides, and is reproductively isolated from the other two lineages by pre- and postmating barriers. The other two lineages had a more variable phylogenetic support, depending on the set of genes; they exhibited an overlapping and diversified range of host species and are not reproductively isolated from one another. We discuss the ecological conditions and mechanisms that likely generated this ongoing speciation and the relevance of this new specialist taxon in the genus Cotesia for biological control.

3.
Philos Trans R Soc Lond B Biol Sci ; 368(1626): 20130047, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23938757

ABSTRACT

Bracoviruses represent the most complex endogenous viral elements (EVEs) described to date. Nudiviral genes have been hosted within parasitoid wasp genomes since approximately 100 Ma. They play a crucial role in the wasp life cycle as they produce bracovirus particles, which are injected into parasitized lepidopteran hosts during wasp oviposition. Bracovirus particles encapsidate multiple dsDNA circles encoding virulence genes. Their expression in parasitized caterpillars is essential for wasp parasitism success. Here, we report on the genomic organization of the proviral segments (i.e. master sequences used to produce the encapsidated dsDNA circles) present in the Cotesia congregata parasitoid wasp genome. The provirus is composed of a macrolocus, comprising two-thirds of the proviral segments and of seven dispersed loci, each containing one to three segments. Comparative genomic analyses with closely related species gave insights into the evolutionary dynamics of bracovirus genomes. Conserved synteny in the different wasp genomes showed the orthology of the proviral macrolocus across different species. The nudiviral gene odv-e66-like1 is conserved within the macrolocus, suggesting an ancient co-localization of the nudiviral genome and bracovirus proviral segments. By contrast, the evolution of proviral segments within the macrolocus has involved a series of lineage-specific duplications.


Subject(s)
DNA, Viral/genetics , Evolution, Molecular , Genome , Polydnaviridae/genetics , Wasps/genetics , Wasps/virology , Animals , Base Sequence , Female , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Virulence Factors/genetics
4.
PLoS One ; 8(5): e64432, 2013.
Article in English | MEDLINE | ID: mdl-23724046

ABSTRACT

The geographic mosaic of coevolution predicts parasite virulence should be locally adapted to the host community. Cotesia parasitoid wasps adapt to local lepidopteran species possibly through their symbiotic bracovirus. The virus, essential for the parasitism success, is at the heart of the complex coevolutionary relationship linking the wasps and their hosts. The large segmented genome contained in the virus particles encodes virulence genes involved in host immune and developmental suppression. Coevolutionary arms race should result in the positive selection of particular beneficial alleles. To understand the global role of bracoviruses in the local adaptation or specialization of parasitoid wasps to their hosts, we studied the molecular evolution of four bracoviruses associated with wasps of the genus Cotesia, including C congregata, C vestalis and new data and annotation on two ecologically differentiated populations of C sesamie, Kitale and Mombasa. Paired orthologs analyses revealed more genes under positive selection when comparing the two C sesamiae bracoviruses belonging to the same species, and more genes under strong evolutionary constraint between species. Furthermore branch-site evolutionary models showed that 17 genes, out of the 54 currently available shared by the four bracoviruses, harboured sites under positive selection including: the histone H4-like, a C-type lectin, two ep1-like, ep2, a viral ankyrin, CrV1, a ben-domain, a Serine-rich, and eight unknown genes. Lastly the phylogenetic analyses of the histone, ep2 and CrV1 genes in different African C sesamiae populations showed that each gene described differently the individual relationships. In particular we found recombination had happened between the ep2 and CrV1 genes, which are localized 37.5 kb apart on the wasp chromosomes. Involved in multidirectional coevolutionary interactions, C sesamiae wasps rely on different bracovirus mediated molecular pathways to overcome local host resistance.


Subject(s)
Adaptation, Physiological/genetics , Genome, Viral/genetics , Parasites/virology , Polydnaviridae/genetics , Selection, Genetic , Wasps/virology , Amino Acids/genetics , Animals , Base Sequence , Evolution, Molecular , Genes, Viral/genetics , Genomics , Sequence Homology, Nucleic Acid
5.
PLoS One ; 6(2): e16342, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347361

ABSTRACT

BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become discernable with the future acquisition of genomic and metagenomic sequences.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic/methods , Eukaryota/genetics , Plankton/genetics , Animals , DNA, Ribosomal/genetics , Eukaryota/classification , Evolution, Molecular , Genome/genetics , Humans , Mice , Plankton/classification , Proteome/genetics , Rats
6.
Mol Biol Evol ; 25(11): 2293-300, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18678753

ABSTRACT

We compared the proteomes of two picoplanktonic Ostreococcus unicellular green algal ecotypes to analyze the genetic basis of their adaptation with their ecological niches. We first investigated the function of the species-specific genes using Gene Ontology databases and similarity searches. Although most species-specific genes had no known function, we identified several species-specific functions involved in various cellular processes, which could be critical for environmental adaptations. Additionally, we investigated the rate of evolution of orthologous genes and its distribution across chromosomes. We show that faster evolving genes encode significantly more membrane or excreted proteins, consistent with the notion that selection acts on cell surface modifications that is driven by selection for resistance to viruses and grazers, keystone actors of phytoplankton evolution. The relationship between GC content and chromosome length also suggests that both strains have experienced recombination since their divergence and that lack of recombination on the two outlier chromosomes could explain part of their peculiar genomic features, including higher rates of evolution.


Subject(s)
Adaptation, Physiological/genetics , Chlorophyta/genetics , Proteome/genetics , Base Composition , Ecosystem , Phytoplankton/genetics , Species Specificity
7.
Proc Natl Acad Sci U S A ; 104(18): 7705-10, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17460045

ABSTRACT

The smallest known eukaryotes, at approximately 1-mum diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size.


Subject(s)
Chlorophyta/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/metabolism , Genome/genetics , Plankton/classification , Plankton/genetics , Adaptation, Physiological , Biological Evolution , Cell Nucleus/genetics , Chlorophyta/metabolism , Chromosomes/genetics , Environment , Gene Transfer, Horizontal , Metals/metabolism , Molecular Sequence Data , Plankton/metabolism , Selenoproteins/metabolism , Vitamins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...