Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820242

ABSTRACT

Arsenic is highly toxic and a significant threat to human health, but certain bacteria have developed defense mechanisms initiated by AsIII binding to AsIII-sensing proteins of the ArsR family. The transcriptional regulator AfArsR responds to AsIII and SbIII by coordinating the metalloids with three cysteines, located in a short sequence of the same monomer chain. Here, we characterize the binding of AsIII and HgII to a model peptide encompassing this fragment of the protein via solution equilibrium and spectroscopic/spectrometric techniques (pH potentiometry, UV, CD, NMR, PAC, EXAFS, and ESI-MS) combined with DFT calculations and MD simulations. Coordination of AsIII changes the peptide structure from a random-coil to a well-defined structure of the complex. A trigonal pyramidal AsS3 binding site is formed with almost exactly the same structure as observed in the crystal structure of the native protein, implying that the peptide possesses all of the features required to mimic the AsIII recognition and response selectivity of AfArsR. Contrary to this, binding of HgII to the peptide does not lead to a well-defined structure of the peptide, and the atoms near the metal binding site are displaced and reoriented in the HgII model. Our model study suggests that structural organization of the metal site by the inducer ion is a key element in the mechanism of the metalloid-selective recognition of this protein.

2.
Chemistry ; 30(31): e202304064, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38456607

ABSTRACT

Short peptide sequences consisting of two cysteine residues separated by three other amino acids display complete change from random coil to α-helical secondary structure in response to addition of Ag+ ions. The folded CXXXC/Ag+ complex involves formation of multinuclear Ag+ species and is stable in a wide pH range from below 3 to above 8. The complex is stable through reversed-phase HPLC separation as well as towards a physiological level of chloride ions, based on far-UV circular dichroism spectroscopy. In electrospray MS under acidic conditions a peptide dimer with four Ag+ ions bound was observed, and modelling based on potentiometric experiments supported this to be the dominating complex at neutral pH together with a peptide dimer with 3 Ag+ and one proton at lower pH. The complex was demonstrated to work as a N-terminal nucleation site for inducing α-helicity into longer peptides. This type of silver-mediated peptide assembly and folding may be of more general use for stabilizing not only peptide folding but also for controlling oligomerization even under acidic conditions.


Subject(s)
Circular Dichroism , Cysteine , Peptides , Silver , Silver/chemistry , Cysteine/chemistry , Peptides/chemistry , Hydrogen-Ion Concentration , Protein Conformation, alpha-Helical , Coordination Complexes/chemistry , Amino Acid Sequence , Protein Folding , Chromatography, High Pressure Liquid
3.
Protein Sci ; 32(12): e4809, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853808

ABSTRACT

ß-Lactamases grant resistance to bacteria against ß-lactam antibiotics. The active center of TEM-1 ß-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 ß-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 ß-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 ß-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 µM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.


Subject(s)
Cadmium , Mercury , Cadmium/pharmacology , Escherichia coli/metabolism , Hydrolysis , Kinetics , beta-Lactamases/chemistry , Ampicillin/pharmacology , Mercury/pharmacology , Catalysis , Ions
4.
Inorg Chem ; 62(17): 6817-6824, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37071818

ABSTRACT

The AsIII binding of two NTA-based tripodal pseudopeptides, possessing three cysteine (ligand L1) or d-penicillamine residues (ligand L2) as potential coordinating groups for soft semimetals or metal ions, was studied by experimental (UV, CD, NMR, and ESI-MS) and theoretical (DFT) methods. All of the experimental data, obtained with the variation of the AsIII:ligand concentration ratios or pH values in some instances, evidence the exclusive formation of species with an AsS3-type coordination mode. The UV-monitored titration of the ligands with arsenous acid at pH = 7.0 provided an absorbance data set that allowed for the determination of apparent stability constants of the forming species. The obtained stabilities (logK' = 5.26 (AsL1) and logK' = 3.04 (AsL2)) reflect high affinities, especially for the sterically less restricted cysteine derivative. DFT calculated structures correlate well with the spectroscopic results and, in line with the 1H NMR data, indicate a preference for the all-endo conformers resembling the AsIII environment at the semimetal binding sites in various metalloproteins.


Subject(s)
Arsenic , Metalloids , Binding Sites , Cysteine/chemistry , Ligands , Peptides/chemistry , Proteins/chemistry , Sulfhydryl Compounds/chemistry
5.
Angew Chem Int Ed Engl ; 61(35): e202207137, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35718746

ABSTRACT

The complexation of MgII with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- 1/2 ß-emitter 31 Mg to study MgII -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using ß-radiation-detected nuclear magnetic resonance (ß-NMR). We demonstrate that (nuclear) spin-polarized 31 Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing. The evolution of the spectra with solute concentration indicates that the implanted 31 Mg initially bind to the solvent acetate anions, whereafter they undergo dynamic exchange and form either a mono- (31 Mg-ATP) or di-nuclear (31 MgMg-ATP) complex. The chemical shift of 31 Mg-ATP is observed up-field of 31 MgMg-ATP, in accord with quantum chemical calculations. These observations constitute a crucial advance towards using ß-NMR to probe chemistry and biochemistry in solution.


Subject(s)
Adenosine Triphosphate , Magnesium , Adenosine Triphosphate/chemistry , Imidazoles , Magnetic Resonance Spectroscopy/methods
6.
Chembiochem ; 23(16): e202200290, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35714117

ABSTRACT

The transcriptional regulator CueR is activated by the binding of CuI , AgI , or AuI to two cysteinates in a near-linear fashion. The C-terminal CCHHRAG sequence in Escherichia coli CueR present potential additional metal binding ligands and here we explore the effect of deleting this fragment on the binding of AgI to CueR. CD spectroscopic and ESI-MS data indicate that the high AgI -binding affinity of WT-CueR is significantly reduced in Δ7C-CueR.[111 Ag PAC spectroscopy demonstrates that the WT-CueR metal site structure (AgS2 ) is conserved, but less populated in the truncated variant. Thus, the function of the C-terminal fragment may be to stabilize the two-coordinate metal site for cognate monovalent metal ions. In a broader perspective this is an example of residues beyond the second coordination sphere affecting metal site physicochemical properties while leaving the structure unperturbed.


Subject(s)
DNA-Binding Proteins , Escherichia coli Proteins , Trans-Activators , Binding Sites , Copper/chemistry , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gold/chemistry , Metals/metabolism , Silver/chemistry , Trans-Activators/metabolism
7.
Molecules ; 26(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063080

ABSTRACT

Copper(II) complexes of thiosemicarbazones (TSCs) often exhibit anticancer properties, and their pharmacokinetic behavior can be affected by their interaction with blood transport proteins. Interaction of copper(II) complexes of an {N,N,S} donor α-N-pyridyl TSC (Triapine) and an {O,N,S} donor 2-hydroxybenzaldehyde TSC (STSC) with human serum albumin (HSA) was investigated by UV-visible and electron paramagnetic resonance spectroscopy at physiological pH. Asp-Ala-His-Lys and the monodentate N-methylimidazole were also applied as binding models. Conditional formation constants were determined for the ternary copper(II)-TSC complexes formed with HSA, DAHK, and N-methylimidazole based on the spectral changes of both charge transfer and d-d bands. The neutral N-methylimidazole displays a similar binding affinity to both TSC complexes. The partially negatively charged tetrapeptide binds stronger to the positively charged Triapine complex in comparison to the neutral STSC complex, while the opposite trend was observed for HSA, which demonstrates the limitations of the use of simple ligands to model the protein binding. The studied TSC complexes are able to bind to HSA in a fast process, and the conditional constants suggest that their binding strength is only weak-to-moderate.


Subject(s)
Copper/metabolism , Serum Albumin, Human/metabolism , Thiosemicarbazones/metabolism , Anisotropy , Computer Simulation , Humans , Oligopeptides/chemistry , Oxidation-Reduction , Protein Binding , Pyridines/chemistry , Solutions , Spectrophotometry, Ultraviolet , Thiosemicarbazones/chemistry , Time Factors
8.
Eur Biophys J ; 50(3-4): 491-500, 2021 May.
Article in English | MEDLINE | ID: mdl-33907862

ABSTRACT

The response of CueR towards environmental changes in solution was investigated. CueR is a bacterial metal ion selective transcriptional metalloregulator protein, which controls the concentration of copper ions in the cell. Although several articles have been devoted to the discussion of the structural and functional features of this protein, CueR has not previously been extensively characterized in solution. Here, we studied the effect of change in pH, temperature, and the presence of specific or non-specific binding partners on the secondary structure of CueR with circular dichroism (CD) spectroscopy. A rather peculiar reversible pH-dependent secondary structure transformation was observed, elucidated and supplemented with pKa estimation by PROPKA and CpHMD simulations suggesting an important role of His(76) and His(94) in this process. CD experiments revealed that the presence of DNA prevents this structural switch, suggesting that DNA locks CueR in the α-helical-rich form. In contrast to the non-cognate metal ions HgII, CdII and ZnII, the presence of the cognate AgI ion affects the secondary structure of CueR, most probably by stabilizing the metal ion and DNA-binding domains of the protein.


Subject(s)
Protein Structure, Secondary , Bacterial Proteins , Circular Dichroism , Copper , DNA , DNA-Binding Proteins , Hydrogen-Ion Concentration , Ions , Metals
9.
J Inorg Biochem ; 206: 111013, 2020 05.
Article in English | MEDLINE | ID: mdl-32088594

ABSTRACT

Peptide tags are extensively used for affinity purification of proteins. In an optimal case, these tags can be completely removed from the purified protein by a specific protease mediated hydrolysis. However, the interactions of these tags with the target protein may also be utilized for the modulation of the protein function. Here we show that the C-terminal hexahistidine (6 × His) tag can influence the catalytic activity of the nuclease domain of the Colicin E7 metallonuclease (NColE7) used by E. coli to kill competing bacteria under stress conditions. This enzyme non-specifically cleaves the DNA that results in cytotoxicity. We have successfully cloned the genes of NColE7 protein and its R447G mutant into a modified pET-21a DNA vector fusing the affinity tag to the protein upon expression, which would be otherwise not possible in the absence of the gene of the Im7 inhibitory protein. This reflects the inhibitory effect of the 6 × His fusion tag on the nuclease activity, which proved to be a complex process via both coordinative and non-specific steric interactions. The modulatory effect of Zn2+ ion was observed in the catalytic activity experiments. The DNA cleavage ability of the 6 × His tagged enzyme was first enhanced by an increase of metal ion concentration, while high excess of Zn2+ ions caused a lower rate of the DNA cleavage. Modelling of the coordinative effect of the fusion tag by external chelators suggested ternary complex formation instead of removal of the metal ion from the active center.


Subject(s)
Colicins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Histidine/metabolism , Oligopeptides/metabolism , Zinc/metabolism , Amino Acid Sequence , Chromatography, Affinity , Colicins/chemistry , Escherichia coli Proteins/chemistry , Histidine/chemistry , Models, Molecular , Oligopeptides/chemistry , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Zinc/chemistry
10.
Chemistry ; 26(33): 7451-7457, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32045037

ABSTRACT

Selectivity for monovalent metal ions is an important facet of the function of the metalloregulatory protein CueR. 111 Ag perturbed angular correlation of γ-rays (PAC) spectroscopy probes the metal site structure and the relaxation accompanying the instantaneous change from AgI to CdII upon 111 Ag radioactive decay. That is, a change from AgI , which activates transcription, to CdII , which does not. In the frozen state (-196 °C) two nuclear quadrupole interactions (NQIs) are observed; one (NQI1 ) agrees well with two coordinating thiolates and an additional longer contact to the S77 backbone carbonyl, and the other (NQI2 ) reflects that CdII has attracted additional ligand(s). At 1 °C only NQI2 is observed, demonstrating that relaxation to this structure occurs within ≈10 ns of the decay of 111 Ag. Thus, transformation from AgI to CdII rapidly disrupts the functional linear bis(thiolato)AgI metal site structure. This inherent metal site flexibility may be central to CueR function, leading to remodelling into a non-functional structure upon binding of non-cognate metal ions. In a broader perspective, 111 Ag PAC spectroscopy may be applied to probe the flexibility of protein metal sites.

11.
Chemistry ; 25(66): 15030-15035, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31365771

ABSTRACT

Intracellular CuI is controlled by the transcriptional regulator CueR, which effectively discriminates between monovalent and divalent metal ions. It is intriguing that HgII does not activate transcription, as bis-thiolate metal sites exhibit high affinity for HgII . Here the binding of HgII to CueR and a truncated variant, ΔC7-CueR, without the last 7 amino acids at the C-terminus including a conserved CCHH motif is explored. ESI-MS demonstrates that up to two HgII bind to CueR, while ΔC7-CueR accommodates only one HgII . 199m Hg PAC and UV absorption spectroscopy indicate HgS2 structure at both the functional and the CCHH metal site. However, at sub-equimolar concentrations of HgII at pH 8.0, the metal binding site displays an equilibrium between HgS2 and HgS3 , involving cysteines from both sites. We hypothesize that the C-terminal CCHH motif provides auxiliary ligands that coordinate to HgII and thereby prevents activation of transcription.


Subject(s)
Cysteine/chemistry , Escherichia coli Proteins/chemistry , Mercury/chemistry , Trans-Activators/chemistry , Amino Acid Sequence , Binding Sites , Cations, Divalent/chemistry , Cations, Monovalent/chemistry , Copper/chemistry , Cysteine/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ligands , Mercury/metabolism , Sequence Alignment , Trans-Activators/genetics , Trans-Activators/metabolism , Transcriptional Activation
12.
Dalton Trans ; 48(23): 8327-8339, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31111849

ABSTRACT

Hg2+ and Cd2+ complexation of a short hexapeptide, Ac-DCSSCY-NH2 (DY), was studied by pH-potentiometry, UV and NMR spectroscopy and fluorimetry in aqueous solutions and the Hg2+-binding ability of the ligand was also described in an immobilized form, where the peptides were anchored to a hydrophilic resin. Hg2+ was demonstrated to form a 1 : 1 complex with the ligand even at pH = 2.0 while Cd2+ coordination by the peptide takes place only above pH ∼ 3.5. Both metal ions form bis-ligand complexes by the coordination of four Cys-thiolates at ligand excess above pH ∼ 5.5 (Cd2+) and 7.0 (Hg2+). Fluorescence studies demonstrated a Hg2+ induced concentration-dependent quenching of the Tyr fluorescence until a 1 : 1 Hg2+ : DY ratio. The fluorescence emission intensity decreases linearly with the increasing Hg2+ concentration in a range of over two orders of magnitude. The fact that this occurs even in the presence of 1.0 eq. of Cd2+ per ligand reflects a complete displacement of the latter metal ion by Hg2+ from its peptide-bound form. The immobilized peptide was also shown to bind Hg2+ very efficiently even from samples at pH = 2.0. However, the existence of lower affinity binding sites was also demonstrated by binding of more than 1.0 eq. of Hg2+ per immobilized DY molecule under Hg2+-excess conditions. Experiments performed with a mixture of four metal ions, Hg2+, Cd2+, Zn2+ and Ni2+, indicate that this molecular probe may potentially be used in Hg2+-sensing systems under acidic conditions for the measurement of µM range concentrations.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 161-170, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30986708

ABSTRACT

In order to improve the fluorescence properties of the green fluorescent protein chromophore, p­HOBDI ((5­(4­hydroxybenzylidene)­2,3­dimethyl­3,5­dihydro­4H­imidazol­4­one), sixteen dihydroimidazolone derivates were synthesized from thiohydantoin and arylaldehydes. The synthesis developed is an efficient, novel, one-pot procedure. The study provides a detailed description of the spectroscopic characteristics of the newly synthesized compounds, using p­HOBDI as a reference. The new compounds all exhibited significantly stronger fluorescence than p­HOBDI, up to 28 times higher quantum yields. An experimental and theoretical investigation of the relationship of the fluorescence properties with the molecular structure was also carried out. A good correlation was found between the emission wavenumber and the Hammett constant of the functional group, which suggests the intermolecular charge transfer (ICT) mechanism between the aromatic groups.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Imidazoles/chemistry , Amination , Combinatorial Chemistry Techniques , Fluorescence , Fluorescent Dyes/chemical synthesis , Imidazoles/chemical synthesis , Models, Molecular , Spectrometry, Fluorescence
14.
Metallomics ; 10(9): 1232-1244, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30043818

ABSTRACT

The essential Cu(i) and the toxic Hg(ii) ions possess similar coordination properties, and therefore, similar cysteine rich proteins participate in the control of their intracellular concentration. In this work we present the metal binding properties of linear and cyclic model peptides incorporating the three-cysteine motifs, CxCxxC or CxCxC, found in metallothioneins. Cu(i) binding to the series of peptides at physiological pH revealed to be rather complicated, with the formation of mixtures of polymetallic species. In contrast, the Hg(ii) complexes display well-defined structures with spectroscopic features characteristic for a HgS2 and HgS3 coordination mode at pH = 2.0 and 7.4, respectively. Stability data reflect a ca. 20 orders of magnitude larger affinity of the peptides for Hg(ii) (log ßpH7.4HgP ≈ 41) than for Cu(i) (log ßpH7.4CuP ≈ 18). The different behaviour with the two metal ions demonstrates that the use of Hg(ii) as a probe for Cu(i), coordinated by thiolate ligands in water, may not always be fully appropriate.


Subject(s)
Copper/chemistry , Cysteine/chemistry , Mercury/chemistry , Oligopeptides/chemistry , Binding Sites , Hydrogen-Ion Concentration
15.
Inorg Chem ; 57(12): 7191-7200, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29856616

ABSTRACT

British anti-Lewisite (2,3-dimerkaptopropan-1-ol, dimercaprol, BAL) is one of the best-known chelator-type therapeutic agents against toxic metal ions and metalloids, especially arsenicals. Surprisingly, the mechanisms of action at the molecular level, as well as the coordination features of this traditional drug toward various arsenicals, are still poorly revealed. The present study on the interaction of arsenous acid (H3AsO3) with BAL, involving UV and NMR titrations, electrospray ionization mass spectrometry, and 2D NMR experiments combined with MP2 calculations, demonstrates that the reaction of H3AsO3 with BAL at pH = 7.0 results in a more complex speciation than was assumed before. The three reactive hydroxyl groups of H3AsO3 allow for interaction with three thiol moieties via condensation reaction, leading to the observed AsBAL2 and As2BAL3 complexes besides the AsBAL species. This indicates the strong propensity of inorganic As(III) to saturate its coordination sphere with thiolate groups. The alcoholic hydroxyl group of the ligand may also directly bind to As(III) in AsBAL. Compared to dithiothreitol or dithioeritritol, the preference of BAL to form complexes with such a tridentate binding mode is much lower owing to the more strained bridged bicyclic structure with an αAsSC < 90° bond angle and an unfavorable condensed boat-type six-membered ring. On the basis of the NMR data, the predominating, bidentately bound AsBAL species, including a five-membered chelate ring, exists in rapidly interconverting envelope forms of E and Z stereoisomers. The conditional stability constants calculated for the three macrospecies from a series of UV data [log ßpH=7.0 = 6.95 (AsBAL), 11.56 (AsBAL2), and 22.73 (As2BAL3)] reflect that BAL is still the most efficient, known, dithiol-type chelator of H3AsO3.

16.
Inorg Chem ; 57(10): 5723-5731, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29327922

ABSTRACT

Peptide design is an efficient strategy to create relevant models of natural metal binding sites found in proteins. The two short tetrapeptides Ac-Cys-dPro-Pro-Cys-NH2 (CdPPC) and Ac-Cys-Pro-Gly-Cys-NH2 (CPGC) were synthesized and studied as mimics of Cu(I) binding sites involved in Cu homeostasis. Both sequences contain ß turn inducing motifs to rigidify the peptide backbone structure and thereby preorganize the metal-binding side chains. The more constrained structure of the peptide CdPPC with respect to CPGC was evidenced by the measurements of the temperature coefficients of the amide protons by 1H NMR, which suggest a solvent-shielded intramolecular hydrogen bond in CdPPC, and no H-bond in CPGC. The Cu(I) complexes were studied by UV, circular dichroism (CD), and NMR spectroscopies as well as electrospray ionization mass spectrometry (ESI-MS) experiments in aqueous solution at physiological pH. The complexes formed with CPGC showed a complicated speciation with the possible formation of many polymetallic species. By contrast, the better preorganization in CdPPC leads to the formation of a unique Cu4L3 complex involving a Cu4S6 core. The formation of this specific cluster was confirmed by ESI-MS and by diffusion-ordered NMR spectroscopy in solution. The affinity of CdPPC for Cu(I) (ß11pH7.4 = 1017.5 calculated for a CuL complex) is more than 1 order of magnitude larger than the affinity measured for the less constrained peptide CPGC. Besides, this stability constant value is very similar to those reported with proteins. Therefore, the Cu(I) complex formed with the simple tetrapeptide CdPPC in water at physiological pH represents a very good model of Cu(I)-thiolate clusters found in proteins. The extremely large selectivity (1011) in favor of Cu(I) with respect to Zn(II), an abundant competitor in cells, makes it a promising candidate to be targeted to the liver cells for the localized treatment of Cu overload in Wilson's disease.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Models, Biological , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Binding Sites , Circular Dichroism , Hydrogen Bonding , Models, Molecular , Peptides/metabolism , Spectrometry, Mass, Electrospray Ionization
17.
Acc Chem Res ; 50(9): 2225-2232, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28832106

ABSTRACT

Metalloproteins are essential to numerous reactions in nature, and constitute approximately one-third of all known proteins. Molecular dynamics of proteins has been elucidated with great success both by experimental and theoretical methods, revealing atomic level details of function involving the organic constituents on a broad spectrum of time scales. However, the characterization of dynamics at biomolecular metal sites on nanosecond time scales is scarce in the literature. The aqua ions of many biologically relevant metal ions exhibit exchange of water molecules on the nanosecond time scale or faster, often defining their reactivity in aqueous solution, and this is presumably also a relevant time scale for the making and breaking of coordination bonds between metal ions and ligands at protein metal sites. Ligand exchange dynamics is critical for a variety of elementary steps of reactions in metallobiochemistry, for example, association and dissociation of metal bound water, association of substrate and dissociation of product in the catalytic cycle of metalloenzymes, at regulatory metal sites which require binding and dissociation of metal ions, as well as in the transport of metal ions across cell membranes or between proteins involved in metal ion homeostasis. In Perturbed Angular Correlation of γ-rays (PAC) spectroscopy, the correlation in time and space of two γ-rays emitted successively in a nuclear decay is recorded, reflecting the hyperfine interactions of the PAC probe nucleus with the surroundings. This allows for characterization of molecular and electronic structure as well as nanosecond dynamics at the PAC probe binding site. Herein, selected examples describing the application of PAC spectroscopy in probing the dynamics at protein metal sites are presented, including (1) exchange of Cd2+ bound water in de novo designed synthetic proteins, and the effect of remote mutations on metal site dynamics; (2) dynamics at the ß-lactamase active site, where the metal ion appears to jump between the two adjacent sites; (3) structural relaxation in small blue copper proteins upon 111Ag+ to 111Cd2+ transformation in radioactive nuclear decay; (4) metal ion transfer between two HAH1 proteins with change in coordination number; and (5) metal ion sensor proteins with two coexisting metal site structures. With this Account, we hope to make our modest contribution to the field and perhaps spur additional interest in dynamics at protein metal sites, which we consider to be severely underexplored. Relatively little is known about detailed atomic motions at metal sites, for example, how ligand exchange processes affect protein function, and how the amino acid composition of the protein may control this facet of metal site characteristics. We also aim to provide the reader with a qualitative impression of the possibilities offered by PAC spectroscopy in bioinorganic chemistry, especially when elucidating dynamics at protein metal sites, and finally present data that may serve as benchmarks on a relevant time scale for development and tests of theoretical molecular dynamics methods applied to biomolecular metal sites.


Subject(s)
Gamma Rays , Metals/chemistry , Proteins/chemistry , Spectrum Analysis/methods , Binding Sites
18.
Protein Expr Purif ; 123: 90-6, 2016 07.
Article in English | MEDLINE | ID: mdl-27038857

ABSTRACT

Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure.


Subject(s)
Bacterial Proteins/isolation & purification , DNA-Binding Proteins/isolation & purification , Escherichia coli Proteins/isolation & purification , Escherichia coli/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Ion Exchange , Copper/metabolism , Cysteine/analogs & derivatives , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Plasmids/genetics
19.
Angew Chem Int Ed Engl ; 54(52): 15756-61, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26563985

ABSTRACT

Metal-ion-responsive transcriptional regulators within the MerR family effectively discriminate between mono- and divalent metal ions. Herein we address the origin of the specificity of the CueR protein for monovalent metal ions. Several spectroscopic techniques were employed to study Ag(I) , Zn(II) , and Hg(II) binding to model systems encompassing the metal-ion-binding loop of CueR from E. coli and V. cholerae. In the presence of Ag(I) , a conserved cysteine residue displays a pKa  value for deprotonation of the thiol that is close to the physiological pH value. This property is only observed with the monovalent metal ion. Quantum chemically optimized structures of the CueR metal site with Cys 112 protonated demonstrate that the conserved Ser 77 backbone carbonyl oxygen atom from the other monomer of the homodimer is "pulled" towards the metal site. A common allosteric mechanism of the metalloregulatory members of the MerR family is proposed. For CueR, the mechanism relies on the protonation of Cys 112.

20.
Dalton Trans ; 44(28): 12576-88, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26040991

ABSTRACT

Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.


Subject(s)
Coordination Complexes/chemistry , Mercury/chemistry , Oligopeptides/chemistry , Zinc/chemistry , Circular Dichroism , Ligands , Magnetic Resonance Spectroscopy , Potentiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...