Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(1): e1010423, 2023 01.
Article in English | MEDLINE | ID: mdl-36608112

ABSTRACT

Herbicide resistance in weeds is a growing threat to global crop production. Non-target site resistance is problematic because a single resistance allele can confer tolerance to many herbicides (cross resistance), and it is often a polygenic trait so it can be difficult to identify the molecular mechanisms involved. Most characterized molecular mechanisms of non-target site resistance are caused by gain-of-function mutations in genes from a few key gene families-the mechanisms of resistance caused by loss-of-function mutations remain unclear. In this study, we first show that the mechanism of non-target site resistance to the herbicide thaxtomin A conferred by loss-of-function of the gene PAM16 is conserved in Marchantia polymorpha, validating its use as a model species with which to study non-target site resistance. To identify mechanisms of non-target site resistance caused by loss-of-function mutations, we generated 107 UV-B mutagenized M. polymorpha spores and screened for resistance to the herbicide thaxtomin A. We isolated 13 thaxtomin A-resistant mutants and found that 3 mutants carried candidate resistance-conferring SNPs in the MpRTN4IP1L gene. Mprtn4ip1l mutants are defective in coenzyme Q biosynthesis and accumulate higher levels of reactive oxygen species (ROS) than wild-type plants. Mutants are weakly resistant to thaxtomin A and cross resistant to isoxaben, suggesting that loss of MpRTN4IP1L function confers non-target site resistance. Mutants are also defective in thaxtomin A metabolism. We conclude that loss of MpRTN4IP1L function is a novel mechanism of non-target site herbicide resistance and propose that other mutations that increase ROS levels or decrease thaxtomin A metabolism could contribute to thaxtomin A resistance in the field.


Subject(s)
Herbicides , Herbicides/pharmacology , Ubiquinone , Reactive Oxygen Species , Plant Weeds/genetics
2.
Curr Biol ; 33(4): 660-674.e4, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36696899

ABSTRACT

The shape of modular organisms depends on the branching architecture, which in plants is determined by the fates of generative centers called meristems. The branches of the liverwort Marchantia polymorpha are derived from two adjacent meristems that develop at thallus apices. These meristems may be active and develop branches or may be dormant and do not form branches. The relative number and position of active and dormant meristems define the overall shape and form of the thallus. We show that the clade III SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MpSPL1 is required for meristem dormancy. The activity of MpSPL1 is regulated by the liverwort-specific Mpo-MR13 miRNA, which, in turn, is regulated by PIF-mediated signaling. An unrelated PIF-regulated miRNA, MIR156, represses a different SPL gene (belonging to clade IV) that inhibits branching during the shade avoidance response in Arabidopsis thaliana. This suggests that a conserved light signaling mechanism modulates branching architecture in liverworts and angiosperms and therefore is likely operated in the last common ancestor. However, PIF-mediated signaling represses the expression of different miRNA genes with different SPL targets during dichotomous, apical branching in liverworts and during lateral, subapical branching in angiosperms. We speculate that the mechanism that acts downstream of light and regulates meristem dormancy evolved independently in liverworts and angiosperms.


Subject(s)
Arabidopsis , Marchantia , MicroRNAs , Marchantia/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Meristem/genetics , Meristem/metabolism , Transcription Factors/metabolism , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant
3.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Article in English | MEDLINE | ID: mdl-34990041

ABSTRACT

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Subject(s)
Thlaspi , Chromosomes , Ecosystem , Genome, Plant/genetics , Molecular Sequence Annotation , Thlaspi/genetics , Translational Research, Biomedical
5.
Plant Cell ; 32(12): 3674-3688, 2020 12.
Article in English | MEDLINE | ID: mdl-33037149

ABSTRACT

Linking plant phenotype to genotype is a common goal to both plant breeders and geneticists. However, collecting phenotypic data for large numbers of plants remain a bottleneck. Plant phenotyping is mostly image based and therefore requires rapid and robust extraction of phenotypic measurements from image data. However, because segmentation tools usually rely on color information, they are sensitive to background or plant color deviations. We have developed a versatile, fully open-source pipeline to extract phenotypic measurements from plant images in an unsupervised manner. ARADEEPOPSIS (https://github.com/Gregor-Mendel-Institute/aradeepopsis) uses semantic segmentation of top-view images to classify leaf tissue into three categories: healthy, anthocyanin rich, and senescent. This makes it particularly powerful at quantitative phenotyping of different developmental stages, mutants with aberrant leaf color and/or phenotype, and plants growing in stressful conditions. On a panel of 210 natural Arabidopsis (Arabidopsis thaliana) accessions, we were able to not only accurately segment images of phenotypically diverse genotypes but also to identify known loci related to anthocyanin production and early necrosis in genome-wide association analyses. Our pipeline accurately processed images of diverse origin, quality, and background composition, and of a distantly related Brassicaceae. ARADEEPOPSIS is deployable on most operating systems and high-performance computing environments and can be used independently of bioinformatics expertise and resources.


Subject(s)
Arabidopsis/genetics , Phenomics , Software , Workflow , Arabidopsis/cytology , Computational Biology , Genome-Wide Association Study , Genotype , Image Processing, Computer-Assisted , Phenotype , Plant Leaves/cytology , Plant Leaves/genetics , Semantics
6.
New Phytol ; 225(5): 2064-2076, 2020 03.
Article in English | MEDLINE | ID: mdl-31665812

ABSTRACT

From the cellular perspective, organ growth is determined by production and growth of cells. Uncovering how these two processes are coordinated is essential for understanding organogenesis and regulation of organ growth. We utilized phenotypic and genetic variation of 252 natural accessions of Arabidopsis thaliana to conduct genome-wide association studies (GWAS) for identifying genes underlying root growth variation; using a T-DNA line candidate approach, we identified one gene involved in root growth control and characterized its function using microscopy, root growth kinematics, G2/M phase cell count, ploidy levels and ribosome polysome profiles. We identified a factor contributing to root growth control: Arabidopsis Adenylate Kinase 6 (AAK6). AAK6 is required for normal cell production and normal cell elongation, and its natural genetic variation is involved in determining root growth differences between Arabidopsis accessions. A lack of AAK6 reduces cell production in the aak6 root apex, but this is partially compensated for by longer mature root cells. Thereby, aak6 mutants exhibit compensatory cell enlargement, a phenomenon unexpected in roots. Moreover, aak6 plants accumulate 80S ribosomes while the polysome profile remains unchanged, consistent with a phenotype of perturbed ribosome biogenesis. In conclusion, AAK6 impacts ribosome abundance, cell production and thereby root growth.


Subject(s)
Adenylate Kinase , Arabidopsis Proteins , Plant Roots/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Proliferation , Cell Size , Gene Expression Regulation, Plant , Genome-Wide Association Study , Homeostasis , Ribosomes/metabolism
7.
Cell Rep ; 11(12): 1953-65, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26095367

ABSTRACT

To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Drosophila Proteins/genetics , Memory Consolidation/physiology , Memory, Long-Term/physiology , Synapses/genetics , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Animals , Animals, Genetically Modified , Drosophila , Learning/physiology , Mushroom Bodies/physiology , Neurons/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...