Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-492649

ABSTRACT

Despite the success of currently authorized vaccines for the reduction of severe COVID-19 disease risk, rapidly emerging viral variants continue to drive pandemic waves of infection, resulting in numerous global public health challenges. Progress will depend on future advances in prophylactic vaccine activity, including advancement of candidates capable of generating more potent induction of cross-reactive T cells and durable cross-reactive antibody responses. Here we evaluated an Amphiphile (AMP) adjuvant, AMP-CpG, admixed with SARS-CoV-2 Spike receptor binding domain (RBD) immunogen, as a lymph node-targeted protein subunit vaccine (ELI-005) in mice and non-human primates (NHPs). AMP-mediated targeting of CpG DNA to draining lymph nodes resulted in comprehensive local immune activation characterized by extensive transcriptional reprogramming, inflammatory proteomic milieu, and activation of innate immune cells as key orchestrators of antigen-directed adaptive immunity. Prime-boost immunization with AMP-CpG in mice induced potent and durable T cell responses in multiple anatomical sites critical for prophylactic efficacy and prevention of severe disease. Long-lived memory responses were rapidly expanded upon re-exposure to antigen. In parallel, RBD-specific antibodies were long-lived, and exhibited cross-reactive recognition of variant RBD. AMP-CpG-adjuvanted prime-boost immunization in NHPs was safe and well tolerated, while promoting multi-cytokine-producing circulating T cell responses cross-reactive across variants of concern (VOC). Expansion of RBD-specific germinal center (GC) B cells in lymph nodes correlated to rapid seroconversion with variant-specific neutralizing antibody responses exceeding those measured in convalescent human plasma. These results demonstrate the promise of lymph-node adjuvant-targeting to coordinate innate immunity and generate robust adaptive responses critical for vaccine efficacy.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-484950

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity, and the emergence of SARS-CoV-2 variants such as Omicron represents a major global health challenge. Here we present data from a study in non-human primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine, consisting of RBD (receptor binding domain) on the I53-50 nanoparticle, adjuvanted with AS03, currently in Phase 3 clinical trial (NCT05007951). Vaccination induced robust neutralizing antibody (nAb) titers that were maintained at high levels for at least one year after two doses (Pseudovirus nAb GMT: 2207, Live-virus nAb GMT: 1964) against the ancestral strain, but not against Omicron. However, a booster dose at 6-12 months with RBD-Wu or RBD-{beta} (RBD from the Beta variant) displayed on I53-50 elicited equivalent and remarkably high neutralizing titers against the ancestral as well as the Omicron variant. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Importantly, vaccination resulted in protection against Omicron infection in the lung (no detectable virus in any animal) and profound suppression of viral burden in the nares (median peak viral load of 7567 as opposed to 1.3x107 copies in unvaccinated animals) at 6 weeks post final booster. Even at 6 months post vaccination, there was significant protection in the lung (with 7 out of 11 animals showing no viral load, 3 out of 11 animals showing ~20-fold lower viral load than unvaccinated controls) and rapid control of virus in the nares. These results highlight the durable cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine platform.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-444262

ABSTRACT

Although antivirals are important tools to control the SARS-CoV-2 infection, effective vaccines are essential to control the current pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here we report the immunogenicity and protection induced in macaques by intramuscular injections of VLP bearing SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytosine phosphoguanine (CpG) 1018. Although a single dose of unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after prime) and adjuvants significantly improved both responses with a higher immunogenicity and protection provided by AS03 adjuvanted CoVLP. Fifteen microgram CoVLP adjuvanted with AS03 induced a balanced IL-2 driven response along with IL-4 expression in CD4 T cells and mobilization of CD4 follicular helper cells (Tfh). Animals were challenged by multiple routes (i.e. intratracheal, intranasal and ocular) with a total viral dose of 106 plaque forming units of SARS-CoV-2. Lower viral replication in nasal swabs and broncho-alveolar lavage (BAL) as well as fewer SARS-CoV-2 infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of pro-inflammatory cytokines and chemotactic factors in BAL were observed in the animals immunized with CoVLP adjuvanted with AS03. No clinical, pathologic or virologic evidences of vaccine associated enhanced disease (VAED) were observed in vaccinated animals. CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-430696

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-421008

ABSTRACT

A safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD down, one-RBD up state. In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFN{gamma}+ CD8+ T-cell responses. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. Both candidates are being evaluated in phase 1 trials in Germany and the United States. BNT162b2 is being evaluated in an ongoing global, pivotal Phase 2/3 trial (NCT04380701, NCT04368728).

SELECTION OF CITATIONS
SEARCH DETAIL
...