Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1899: 103-118, 2019.
Article in English | MEDLINE | ID: mdl-30649768

ABSTRACT

Alloantigen-specific hyporesponsiveness can be induced in alloreactive T cells contained within the whole peripheral blood mononuclear cell (PBMC) population by stimulating these responder cells ex vivo with HLA-mismatched stimulator PBMC as the antigen presenting cell (APC) source, in the presence of a CD28 costimulation blocking agent. As a result of this approach, specific alloreactivity is markedly decreased (by 1-2 logs), but third-party alloresponses and in vitro responses relying on the activation of pathogen- and tumor-associated antigen T-cell functional activities are not globally impinged upon (Guinan et al. N Engl J Med 340(22):1704-1714, 1999, Davies et al. Transplantation 86(6):854-864, 2008, Davies et al. Cell Transplant 21(9):2047-61, 2012). This method has been used clinically to alloanergize bone marrow and PBMC allografts, creating ex vivo cell therapies for adoptive transfer to blood cancer patients at high risk of disease relapse whose best option was to receive haploidentical hematopoietic cell transplants. These early phase trials consisting of, or containing, alloanergized T-cell infusions show promise in reducing graft-versus-host disease (GvHD), providing more rapid immune reconstitution, and decreasing severe post-transplant infectious complications and disease relapse. Herein, we describe this straightforward technique for generating alloanergized PBMC as it is performed in the research lab setting using belatacept for CD28-mediated costimulatory blockade (CSB) and PBMC isolated by Ficoll Hypaque gradient centrifugation as responders and APC. We also describe methods for evaluating subsequent alloproliferation to first and third party stimulation as well as assessment of cell division, pathogen-specific immunity, or allosuppression. The technique has successfully been transferred to collaborating labs, largely owing to the flexibility of using fresh or frozen PBMC, the lack of a requirement for specially isolated APC populations, and the ability to scale up or scale down the cell numbers that are to be anergized.


Subject(s)
CD28 Antigens/immunology , Immune Tolerance , Lymphocyte Activation/immunology , Lymphocyte Culture Test, Mixed/methods , T-Lymphocytes, Regulatory/immunology , Antigen-Presenting Cells/immunology , Bone Marrow/immunology , Hematopoietic Stem Cell Transplantation , Humans , Isoantigens/immunology , Leukocytes, Mononuclear/immunology , Transplantation, Homologous
2.
Am J Hematol ; 2018 May 11.
Article in English | MEDLINE | ID: mdl-29752735

ABSTRACT

The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...