Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38328085

ABSTRACT

Obstructive sleep apnea (OSA) is common in older adults and is associated with medial temporal lobe (MTL) degeneration and memory decline in aging and Alzheimer's disease (AD). However, the underlying mechanisms linking OSA to MTL degeneration and impaired memory remains unclear. By combining magnetic resonance imaging (MRI) assessments of cerebrovascular pathology and MTL structure with clinical polysomnography and assessment of overnight emotional memory retention in older adults at risk for AD, cerebrovascular pathology in fronto-parietal brain regions was shown to statistically mediate the relationship between OSA-related hypoxemia, particularly during rapid eye movement (REM) sleep, and entorhinal cortical thickness. Reduced entorhinal cortical thickness was, in turn, associated with impaired overnight retention in mnemonic discrimination ability across emotional valences for high similarity lures. These findings identify cerebrovascular pathology as a contributing mechanism linking hypoxemia to MTL degeneration and impaired sleep-dependent memory in older adults.

2.
Alzheimers Dement (Amst) ; 16(1): e12542, 2024.
Article in English | MEDLINE | ID: mdl-38348178

ABSTRACT

INTRODUCTION: Virtually all people with Down syndrome (DS) develop neuropathology associated with Alzheimer's disease (AD). Atrophy of the hippocampus and entorhinal cortex (EC), as well as elevated plasma concentrations of neurofilament light chain (NfL) protein, are markers of neurodegeneration associated with late-onset AD. We hypothesized that hippocampus and EC gray matter loss and increased plasma NfL concentrations are associated with memory in adults with DS. METHODS: T1-weighted structural magnetic resonance imaging (MRI) data were collected from 101 participants with DS. Hippocampus and EC volume, as well as EC subregional cortical thickness, were derived. In a subset of participants, plasma NfL concentrations and modified Cued Recall Test scores were obtained. Partial correlation and mediation were used to test relationships between medial temporal lobe (MTL) atrophy, plasma NfL, and episodic memory. RESULTS: Hippocampus volume, left anterolateral EC (alEC) thickness, and plasma NfL were correlated with each other and were associated with memory. Plasma NfL mediated the relationship between left alEC thickness and memory as well as hippocampus volume and memory. DISCUSSION: The relationship between MTL gray matter and memory is mediated by plasma NfL levels, suggesting a link between neurodegenerative processes underlying axonal injury and frank gray matter loss in key structures supporting episodic memory in people with DS.

3.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961192

ABSTRACT

Memory consolidation occurs via reactivation of a hippocampal index during non-rapid eye movement slow-wave sleep (NREM SWS) which binds attributes of an experience existing within cortical modules. For memories containing emotional content, hippocampal-amygdala dynamics facilitate consolidation over a sleep bout. This study tested if modularity and centrality-graph theoretical measures that index the level of segregation/integration in a system and the relative import of its nodes-map onto central tenets of memory consolidation theory and sleep-related processing. Findings indicate that greater network integration is tied to overnight emotional memory retention via NREM SWS expression. Greater hippocampal and amygdala influence over network organization supports emotional memory retention, and hippocampal or amygdala control over information flow are differentially associated with distinct stages of memory processing. These centrality measures are also tied to the local expression and coupling of key sleep oscillations tied to sleep-dependent memory consolidation. These findings suggest that measures of intrinsic network connectivity may predict the capacity of brain functional networks to acquire, consolidate, and retrieve emotional memories.

4.
Neuropsychologia ; 191: 108727, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37939874

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia, characterized by early memory impairments and gradual worsening of daily functions. AD-related pathology, such as amyloid-beta (Aß) plaques, begins to accumulate many years before the onset of clinical symptoms. Predicting risk for AD via related pathology is critical as the preclinical stage could serve as a therapeutic time window, allowing for early management of the disease and reducing health and economic costs. Current methods for detecting AD pathology, however, are often expensive and invasive, limiting wide and easy access to a clinical setting. A non-invasive, cost-efficient platform, such as computerized cognitive tests, could be potentially useful to identify at-risk individuals as early as possible. In this study, we examined the diagnostic value of an episodic memory task, the mnemonic discrimination task (MDT), for predicting risk of cognitive impairment or Aß burden. We constructed a random forest classification algorithm, utilizing MDT performance metrics and various neuropsychological test scores as input features, and assessed model performance using area under the curve (AUC). Models based on MDT performance metrics achieved classification results with an AUC of 0.83 for cognitive status and an AUC of 0.64 for Aß status. Our findings suggest that mnemonic discrimination function may be a useful predictor of progression to prodromal AD or increased risk of Aß load, which could be a cost-efficient, noninvasive cognitive testing solution for potentially wide-scale assessment of AD pathological and cognitive risk.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Memory, Episodic , Humans , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Cognition , Cognitive Dysfunction/psychology , Positron-Emission Tomography
5.
Learn Mem ; 30(11): 296-309, 2023 11.
Article in English | MEDLINE | ID: mdl-37923355

ABSTRACT

The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we investigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive processes, represented by specific model parameters. Model parameters were compared between groups, and differences were evaluated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mnemonic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related decline in MDT performance and may help to improve the diagnostic value of this popular task.


Subject(s)
Memory, Episodic , Bayes Theorem , Decision Support Techniques
6.
Alzheimers Dement (Amst) ; 15(2): e12419, 2023.
Article in English | MEDLINE | ID: mdl-37035460

ABSTRACT

Introduction: We tested whether Alzheimer's disease (AD) pathology predicts memory deficits in non-demented older adults through its effects on medial temporal lobe (MTL) subregional volume. Methods: Thirty-two, non-demented older adults with cerebrospinal fluid (CSF) (amyloid-beta [Aß]42/Aß40, phosphorylated tau [p-tau]181, total tau [t-tau]), positron emission tomography (PET; 18F-florbetapir), high-resolution structural magnetic resonance imaging (MRI), and neuropsychological assessment were analyzed. We examined relationships between biomarkers and a highly granular measure of memory consolidation, retroactive interference (RI). Results: Biomarkers of AD pathology were related to RI. Dentate gyrus (DG) and CA3 volume were uniquely associated with RI, whereas CA1 and BA35 volume were related to both RI and overall memory recall. AD pathology was associated with reduced BA35, CA1, and subiculum volume. DG volume and Aß were independently associated with RI, whereas CA1 volume mediated the relationship between AD pathology and RI. Discussion: Integrity of distinct hippocampal subfields demonstrate differential relationships with pathology and memory function, indicating specificity in vulnerability and contribution to different memory processes.

7.
Neurobiol Aging ; 121: 119-128, 2023 01.
Article in English | MEDLINE | ID: mdl-36434930

ABSTRACT

The perforant path, the white matter bundle connecting the entorhinal cortex (ERC) with the hippocampal formation deteriorates with age-related cognitive decline. Previous investigations using diffusion-weighted MRI to quantify perforant path integrity in-vivo have been limited due to image resolution or have quantified the perforant path using methods susceptible to partial volume effects such as the tensor model and without consideration of its 3-dimensional morphology. In this investigation, we use quantitative-anisotropy informed tractography derived from ultra-high resolution diffusion imaging (ZOOMit) to investigate structural connectivity of the perforant path and other medial temporal lobe (MTL) pathways in older adults (63 to 98 years old, n = 51). We show that graph density within the MTL declines with age and is associated with lower delayed recall performance. We also show that older age and poorer delayed recall are associated with reduced streamlines connecting the ERC and dentate gyrus of the hippocampus (the putative perforant path). This work suggest that intra-MTL connectivity may new candidate biomarkers for age-related cognitive decline.


Subject(s)
Perforant Pathway , Temporal Lobe , Humans , Aged , Aged, 80 and over , Temporal Lobe/diagnostic imaging , Memory , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Aging , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging
8.
Hippocampus ; 32(9): 627-638, 2022 09.
Article in English | MEDLINE | ID: mdl-35838075

ABSTRACT

Medial temporal lobe (MTL) atrophy is a core feature of age-related cognitive decline and Alzheimer's disease (AD). While regional volumes and thickness are often used as a proxy for neurodegeneration, they lack the sensitivity to serve as an accurate diagnostic test and indicate advanced neurodegeneration. Here, we used a submillimeter resolution diffusion weighted MRI sequence (ZOOMit) to quantify microstructural properties of hippocampal subfields in older adults (63-98 years old) using tensor derived measures: fractional anisotropy (FA) and mean diffusivity (MD). We demonstrate that the high-resolution sequence, and not a standard resolution sequence, identifies dissociable profiles for CA1, dentate gyrus (DG), and the collateral sulcus. Using ZOOMit, we show that advanced age is associated with increased MD of the CA1 and DG as well as decreased FA of the DG. Increased MD of the DG, reflecting decreased cellular density, mediated the relationship between age and word list recall. Further, increased MD in the DG, but not DG volume, was linked to worse spatial pattern separation. Our results demonstrate that ultrahigh-resolution diffusion imaging enables the detection of microstructural differences in hippocampal subfield integrity and will lead to novel insights into the mechanisms of age-related memory loss.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Aged , Aged, 80 and over , Atrophy , Dentate Gyrus/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Temporal Lobe
9.
Elife ; 112022 05 09.
Article in English | MEDLINE | ID: mdl-35532116

ABSTRACT

The hippocampus is known to play a critical role in processing information about temporal context. However, it remains unclear how hippocampal oscillations are involved, and how their functional organization is influenced by connectivity gradients. We examined local field potential activity in CA1 as rats performed a nonspatial odor sequence memory task. We found that odor sequence processing epochs were characterized by distinct spectral profiles and proximodistal CA1 gradients of theta and 20-40 Hz power than track running epochs. We also discovered that 20-40 Hz power was predictive of sequence memory performance, particularly in proximal CA1 and during the plateau of high power observed in trials in which animals had to maintain their decision until instructed to respond. Altogether, these results provide evidence that dynamics of 20-40 Hz power along the CA1 axis are linked to trial-specific processing of nonspatial information critical to order judgments and are consistent with a role for 20-40 Hz power in gating information processing.


Subject(s)
Hippocampus , Memory , Animals , CA1 Region, Hippocampal , Cognition , Odorants , Rats , Theta Rhythm
10.
J Affect Disord ; 301: 368-377, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34999127

ABSTRACT

BACKGROUND: Major Depressive Disorder, characterized by cognitive affective biases, is a considerable public health challenge. Past work has shown that higher depressive symptoms are associated with augmented memory of negative stimuli. In contrast, anxiety symptoms have been associated with overgeneralization of emotional memories. Given the high comorbidity of depression and anxiety, it is critical to understand how cognitive affective biases are differentially associated with clinical symptoms. METHOD: We used continuous measures of depression (Beck Depression Inventory [BDI-II]) and anxiety (Beck Anxiety Inventory [BAI]) to evaluate an adult sample (N = 79; 18-41 years old, 58 female). Emotional memory discrimination and recognition memory were tested using an emotional discrimination task. We applied exploratory factor analysis to questions from the BAI and BDI-II to uncover latent constructs consisting of negative affect, anhedonia, somatic anxiety, and cognitive anxiety. RESULTS: We report evidence that anxious symptoms were associated with impaired recognition of negative items after accounting for age and sex. Our exploratory factor analysis revealed that impaired negative item recognition is largely associated with somatic and cognitive anxiety factors. LIMITATIONS: Interpretations in a mixed pathology sample, especially given collinearity among factors, may be difficult. CONCLUSIONS: We provide evidence that somatic and cognitive anxiety are related to impaired recognition memory for negative stimuli. Future clinical investigations should uncover the neurobiological basis supporting the link between recognition of negative stimuli and somatic/cognitive symptoms of anxiety.


Subject(s)
Depressive Disorder, Major , Adolescent , Adult , Anxiety/psychology , Anxiety Disorders/psychology , Depression/psychology , Depressive Disorder, Major/epidemiology , Female , Humans , Psychiatric Status Rating Scales , Young Adult
11.
Neurobiol Learn Mem ; 177: 107359, 2021 01.
Article in English | MEDLINE | ID: mdl-33285317

ABSTRACT

Alterations in white matter integrity have been demonstrated in a number of psychiatric disorders involving emotional disruptions. One such pathway - the uncinate fasciculus - connects the orbitofrontal cortex (OFC) to the medial temporal lobes (MTL) and has been associated with early life adversity, maltreatment, anxiety, and depression. While it is purported to play a role in episodic memory and discrimination, its exact function remains poorly understood. We have previously described the role of the amygdala and dentate (DG)/CA3 fields of the hippocampus in the mnemonic discrimination of emotional experiences (i.e. emotional pattern separation). However, how this computation may be modulated by connectivity with the orbitofrontal cortex remains unknown. Here we asked if the uncinate fasciculus plays a role in influencing MTL subregional activity during emotional pattern separation. By combining diffusion imaging with high-resolution fMRI, we found that reduced integrity of the UF is related to elevated BOLD fMRI activation of the DG/CA3 subregions of the hippocampus during emotional lure discrimination. We additionally report that higher levels of DG/CA3 activity are associated with poorer memory performance, suggesting that greater activation in this network (possibly driven by CA3 recurrent collaterals) is associated with memory errors. Based on this work we suggest that the UF is one pathway that may allow the OFC to exert control on this network and improve discrimination of emotional experiences, although further work is necessary to fully evaluate this possibility. This work provides novel insight into the role of prefrontal interactions with the MTL, particularly in the context of emotional memory.


Subject(s)
CA3 Region, Hippocampal/physiology , Emotions/physiology , Hippocampus/physiology , Uncinate Fasciculus/physiology , CA3 Region, Hippocampal/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Female , Functional Neuroimaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Uncinate Fasciculus/diagnostic imaging , Young Adult
12.
Int J Med Inform ; 123: 11-22, 2019 03.
Article in English | MEDLINE | ID: mdl-30654899

ABSTRACT

BACKGROUND: Many forms of home-based technology targeting stroke rehabilitation have been devised, and a number of human factors are important to their application, suggesting the need to examine this information in a comprehensive review. OBJECTIVE: The systematic review aims to synthesize the current knowledge of technologies and human factors in home-based technologies for stroke rehabilitation. METHODS: We conducted a systematic literature search in three electronic databases (IEEE, ACM, PubMed), including secondary citations from the literature search. We included articles that used technological means to help stroke patients conduct rehabilitation at home, reported empirical studies that evaluated the technologies with patients in the home environment, and were published in English. Three authors independently conducted the content analysis of searched articles using a list of interactively defined factors. RESULTS: The search yielded 832 potentially relevant articles, leading to 31 articles that were included for in-depth analysis. The types of technology of reviewed articles included games, telerehabilitation, robotic devices, virtual reality devices, sensors, and tablets. We present the merits and limitations of each type of technology. We then derive two main human factors in designing home-based technologies for stroke rehabilitation: designing for engagement (including external and internal motivation) and designing for the home environment (including understanding the social context, practical challenges, and technical proficiency). CONCLUSION: This systematic review presents an overview of key technologies and human factors for designing home-based technologies for stroke rehabilitation.


Subject(s)
Biomedical Technology/standards , Home Care Services/standards , Stroke Rehabilitation/standards , Stroke/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...