Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045377

ABSTRACT

Epilepsy and epileptiform patterns of cortical activity are highly prevalent in autism spectrum disorders (ASDs), but the neural substrates and pathophysiological mechanisms underlying the onset of cortical dysfunction in ASD remains elusive. Reduced cortical expression of Parvalbumin (PV) has been widely observed in ASD mouse models and human postmortem studies, suggesting a crucial role of PV interneurons (PVINs) in ASD pathogenesis. Shank3B -/- mice carrying a Δ13-16 deletion in SHANK3 exhibit cortical hyperactivity during postnatal development and reduced sensory responses in cortical GABAergic interneurons in adulthood. However, whether these phenotypes are associated with PVIN dysfunction is unknown. Using whole-cell electrophysiology and a viral-based strategy to label PVINs during postnatal development, we performed a developmental characterization of AMPAR miniature excitatory postsynaptic currents (mEPSCs) in PVINs and pyramidal (PYR) neurons of layer (L) 2/3 mPFC in Shank3B -/- mice. Surprisingly, reduced mEPSC frequency was observed in both PYR and PVIN populations, but only in adulthood. At P15, when cortical hyperactivity is already observed, both neuron types exhibited normal mEPSC amplitude and frequency, suggesting that glutamatergic connectivity deficits in these neurons emerge as compensatory mechanisms. Additionally, we found normal mEPSCs in adult PVINs of L2/3 somatosensory cortex, revealing region-specific phenotypic differences of cortical PVINs in Shank3B -/- mice. Together, these results demonstrate that loss of Shank3 alters PVIN function but suggest that PVIN glutamatergic synapses are a suboptimal therapeutic target for normalizing early cortical imbalances in SHANK3-associated disorders. More broadly, these findings underscore the complexity of interneuron dysfunction in ASDs, prompting further exploration of region and developmental stage specific phenotypes for understanding and developing effective interventions.

2.
Cell Tissue Res ; 375(1): 143-172, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30054732

ABSTRACT

Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT's role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.


Subject(s)
Anxiety/physiopathology , Corticotropin-Releasing Hormone/metabolism , Fear/drug effects , Oxytocin/pharmacology , Septal Nuclei/metabolism , Septal Nuclei/physiopathology , Animals , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...