Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 55: 329-47, 2013 May.
Article in English | MEDLINE | ID: mdl-23357567

ABSTRACT

The WHO TobReg proposed mandating ceilings on selected smoke constituents determined from the market-specific median of nicotine-normalized yield distributions. Data validating this regulatory concept were obtained from essentially single-blend surveys. This process is strongly impacted by inverse correlations among yields. In the present study, 18 priority WHO smoke constituent yields (nicotine-normalized) were determined (using two smoking regimens) from 262 commercial brands including American, Virginia and local blends from 13 countries. Principal Component Analysis was used to identify yields patterns, clustering of blend types and the inverse correlations causing these clusters. Three principal components explain about 75% of total data variability. PC1 was sensitive to the relative levels of gas- and particle-phase compounds. PC2 and PC3 cluster American- and Virginia-blends, revealing inverse correlations: Nitrogen oxides and amino- or nitroso-aromatic compounds inversely correlate to either formaldehyde and acrolein, or benzo(a)pyrene and di-hydroxybenzenes. These results can be explained by reviewing the processes determining each components smoke delivery. Regulatory initiatives simultaneously targeting selected smoke constituents in markets with mixed blend styles will be strongly impacted by the inverse correlations described. It is difficult to predict the ultimate impact of such regulations on public health, considering the complex chemistry of cigarette smoke formation.


Subject(s)
Nicotiana , Smoke/analysis , Smoking , World Health Organization , Cluster Analysis , Data Collection , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...