Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(7): 6395-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121722

ABSTRACT

We studied the effect of Zn2+ source concentration on the structural and optical properties of hydrothermally grown ZnO nanorods. The nanorods were grown on ZnO/p-Si(111) substrate using by a hydrothermal process in various concentrations of reagent at a low temperature (approximately 95 degrees C) and the structural and optical characteristics of ZnO nanorods were subsequently investigated by X-ray diffraction, field-emission scanning electron microscopy, and room temperature photoluminescence. The results demonstrate that the morphology and crystallinity of ZnO nanorods are influenced by the overall concentration of the precursor. The density and diameter of ZnO nanorods with a hexagonal structure are especially sensitivite to concentration of reactants. Furthermore, the structural transition is shown by increasing concentration. At the lowest concentration of Zn2+, the ZnO nanorods grow as single crystals with a low density and variable orientations. On the contrary, at the highest concentration, the nanorods grow as polycrystas due to the supersaturated Zn2+ source.

2.
J Nanosci Nanotechnol ; 11(2): 1409-12, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456200

ABSTRACT

We investigated the effect of ZnO buffer layer thickness on the growth of hydrothermally grown ZnO nanorods. A series of ZnO buffer layers with different thicknesses was deposited on a p-Si (111) substrate using a co-sputtering system. After annealing the ZnO buffer layer, ZnO nanorods grown were grown hydrothermally at 95 degrees C. Unlike ZnO nanorods grown on as-deposited ZnO buffer layer, the diameter and length of ZnO nanorods grown on annealed ZnO buffer layers can be controlled. The structural and optical properties of ZnO nanorods grown on annealed ZnO buffer layers were analyzed by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence. The influence of ZnO buffer layer thickness on ZnO nanorods growth is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...