Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 187: 955-963, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34343581

ABSTRACT

Three-dimensional (3D) culture systems that provide a more physiologically similar environment than conventional two-dimensional (2D) cultures have been extensively developed. Previously we have provided a facile method for the formation of 3D spheroids using non-adhesive N-hexanoyl glycol chitosan (HGC) hydrogel-coated dishes, but with limitations such as low gel stability and weak mechanical properties. In this study, chemically crosslinked hydrogels were prepared by photocrosslinking of methacrylated HGCs (M-HGCs), and their spheroid-forming abilities were evaluated for long-term 3D cell cultures. The M-HGC hydrogels demonstrated not only enhanced gel stability, but also good spheroid-forming abilities. Furthermore, the M-HGC-coated dishes were effective in generating spheroids of larger size and higher cell density depending on the crosslinking density of the M-HGCs. These results indicate that our hydrogel-coated dish system could be widely applied as an effective technique to produce cell spheroids with customized sizes and densities that are essential for tissue engineering and drug screening.


Subject(s)
Chitosan/chemistry , Fibroblasts/physiology , Cell Culture Techniques , Cells, Cultured , Chitosan/analogs & derivatives , Chitosan/radiation effects , Humans , Hydrogels , Photochemical Processes , Spheroids, Cellular , Surface Properties , Temperature , Ultraviolet Rays
2.
Biomater Res ; 22: 30, 2018.
Article in English | MEDLINE | ID: mdl-30275973

ABSTRACT

BACKGROUND: Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. METHODS: Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC. The degree of thiolation of the thiolated HGCs (SH-HGCs) was controlled in the range of 5-10% by adjusting the feed molar ratio. The structure of the chemically modified polymers was characterized by 1H NMR and ATR-FTIR. The sol-gel transition, mucoadhesiveness, and biocompatibility of the polymers were determined by a tube inverting method, rheological measurements, and in vitro cytotoxicity tests, respectively. RESULTS: The aqueous solution (4 wt%) of HGC with approximately 33% substitution showed a sol-gel transition temperature of approximately 41 °C. SH-HGCs demonstrated lower sol-gel transition temperatures (34 ± 1 and 31 ± 1 °Ð¡) compared to that of HGC due to the introduction of thiol groups. Rheological studies of aqueous mixture solutions of SH-HGCs and mucin showed that SH-HGCs had stronger mucoadhesiveness than HGC due to the interaction between the thiol groups of SH-HGCs and mucin. Additionally, we confirmed that the thermogelling properties might improve the mucoadhesive force of polymers. Several in vitro cytotoxicity tests showed that SH-HGCs showed little toxicity at concentrations of 0.1-1.0 wt%, indicating good biocompatibility of the polymers. CONCLUSIONS: The resultant thiolated hexanoyl glycol chitosans may play a crucial role in mucoadhesive applications in biomedical areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...