Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 29(3): 382-391, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30661322

ABSTRACT

Many poultry eggs are discarded worldwide because of infection (i.e., avian flu) or presence of high levels of pesticides. The possibility of adopting egg yolk as a source material to produce polyhydroxyalkanoate (PHA) biopolymer was examined in this study. Cupriavidus necator Re2133/pCB81 was used for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) or poly(3HHx), a polymer that would normally require long-chain fatty acids as carbon feedstocks for the incorporation of 3HHx monomers. The optimal medium contained 5% egg yolk oil and ammonium nitrate as a nitrogen source, with a carbon/nitrogen (C/N) ratio of 20. Time course monitoring using the optimized medium was conducted for 5 days. Biomass production was 13.1 g/l, with 43.7% co-polymer content. Comparison with other studies using plant oils and the current study using egg yolk oil revealed similar polymer yields. Thus, discarded egg yolks could be a potential source of PHA.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Cupriavidus necator/metabolism , Egg Yolk/chemistry , Biomass , Biopolymers/biosynthesis , Biopolymers/chemistry , Caproates , Carbon/metabolism , Culture Media/chemistry , Cupriavidus necator/growth & development , Fatty Acids/metabolism , Lipids/biosynthesis , Lipids/chemistry , Nitrogen/metabolism , Waste Disposal, Fluid
2.
Plant Cell Rep ; 32(10): 1521-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23743654

ABSTRACT

KEY MESSAGE: Overexpression of OsGS gene modulates oxidative stress response in rice after exposure to cadmium stress. Our results describe the features of transformants with enhanced tolerance to Cd and abiotic stresses. Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity and abiotic stress conditions. We observed a decrease in GS enzyme activity and mRNA expression among transgenic and wild-type plants subjected to Cd stress. The decrease, however, was significantly lower in the wild type than in the transgenic plants. This was further validated by the high GS mRNA expression and enzyme activity in most of the transgenic lines. Moreover, after 10 days of exposure to Cd stress, increase in the glutamine reductase activity and low or no malondialdehyde contents were observed. These results showed that overexpression of the GS gene in rice modulated the expression of enzymes responsible for membrane peroxidation that may result in plant death.


Subject(s)
Cadmium/pharmacology , Glutamate-Ammonia Ligase/metabolism , Oryza/physiology , Oxidative Stress , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Plant , Glutamate-Ammonia Ligase/genetics , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Malondialdehyde/metabolism , Molecular Sequence Data , Oryza/enzymology , Oryza/genetics , Plant Leaves/enzymology , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...