Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 25071-25079, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691640

ABSTRACT

We propose a novel design of thermoelectric (TE) effect-based soft temperature sensors for directly monitoring localized subtle temperature stimuli. This design integrates rheology-engineered three-dimensional (3D) printing of high-performance carbon-based TE materials and polymer-based viscoelastic materials with low thermal conductivity. Rheological engineering of carbon nanotube (CNT) TE inks ensures the 3D printing of highly sensitive TE sensing units on directly written 3D soft platforms. Additionally, we pre-dope CNT inks with p- and n-type organic dopants to achieve high sensitivity and a fast response to temperature changes. The introduced 3D soft platforms with low thermal conductivity lead to an efficient thermal gradient on TE sensing units in the out-of-plane direction. Furthermore, encapsulating the temperature sensor array with the same polymer-based materials as the 3D soft platforms facilitates independent detection of localized temperature stimuli by minimizing thermal interaction between sensing units, resulting in precise temperature mapping by localized detection. Our 3D-printed soft temperature sensors exhibit high sensitivity to relatively small temperature changes, with a minimum sensing resolution of 0.1 K within tens of milliseconds. Moreover, the temperature sensor array not only detects localized temperature stimuli by imaging the temperature distribution but also demonstrates remarkable mechanical reliability against repetitive deformation with high accuracy.

2.
Adv Mater ; 34(11): e2108940, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34984739

ABSTRACT

Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self-assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self-assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non-selective transport channels, while minimally compromising smaller, water-selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter-scale nanoporous graphene with 99.7% and >90% rejection of MgSO4 and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size-dependent intermolecular interactions.

3.
ACS Nano ; 11(10): 10042-10052, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28994572

ABSTRACT

Nanoporous graphene has the potential to advance membrane separations by offering high selectivity with minimal resistance to flow, but how mass transport depends on the structure of pores in this atomically thin membrane is poorly understood. Here, we investigate the relationship between tunable pore creation using ion bombardment and oxygen plasma etching, the resulting pore size distributions, and the consequent water and solute transport. Through tuning of the pore creation process, we demonstrate nanofiltration membranes that reject small molecules but offer high permeance to water or monovalent ions. Theoretical multiscale modeling of transport across the membranes reveals a disproportionate contribution of large pores to osmotic water flux and diffusive solute transport and captures the observed trends in transport measurements except for the smallest pores. This work provides insights into the effects of graphene pore size distribution and support layer on transport and presents a framework for designing atomically thin membranes.

4.
Nanoscale ; 9(24): 8496-8507, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28604878

ABSTRACT

Two-dimensional materials such as graphene offer fundamentally transformative opportunities in membrane separations and as impermeable barriers, but the lack of facile methods to assess and control its 'impermeability' critically limits progress. Here we show that a simple etch of the growth catalyst (Cu) through defects in monolayer graphene synthesized by chemical vapor deposition (CVD) can be used to effectively assess graphene quality for membrane/barrier applications. Using feedback from the method to tune synthesis, we realize graphene with nearly no nanometer-scale defects as assessed by diffusion measurements, in contrast to commercially available graphene that is largely optimized for electronic applications. Interestingly, we observe clear evidence of leakage through larger defects associated with wrinkles in graphene, which are selectively sealed to realize centimeter-scale atomically thin barriers exhibiting <2% mass transport compared to the graphene support. Our work provides a facile method to assess and control the 'impermeability' of graphene and shows that future work should be directed towards the control of leakage associated with wrinkles.

5.
ACS Nano ; 11(6): 5726-5736, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28609103

ABSTRACT

Molecular sieving across atomically thin nanoporous graphene is predicted to enable superior gas separation performance compared to conventional membranes. Although molecular sieving has been demonstrated across a few pores in microscale graphene membranes, leakage through nonselective defects presents a major challenge toward realizing selective membranes with high densities of pores over macroscopic areas. Guided by multiscale gas transport modeling of nanoporous graphene membranes, we designed the porous support beneath the graphene to isolate small defects and minimize leakage through larger defects. Ion bombardment followed by oxygen plasma etching was used to produce subnanometer pores in graphene at a density of ∼1011 cm-2. Gas permeance measurements demonstrate selectivity that exceeds the Knudsen effusion ratio and scales with the kinetic diameter of the gas molecules, providing evidence of molecular sieving across centimeter-scale nanoporous graphene. The extracted nanoporous graphene performance is comparable to or exceeds the Robeson limit for polymeric gas separation membranes, confirming the potential of nanoporous graphene membranes for gas separations.

6.
Nat Nanotechnol ; 12(6): 509-522, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28584292

ABSTRACT

Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

7.
Adv Mater ; 29(33)2017 Sep.
Article in English | MEDLINE | ID: mdl-28656721

ABSTRACT

Dialysis is a ubiquitous separation process in biochemical processing and biological research. State-of-the-art dialysis membranes comprise a relatively thick polymer layer with tortuous pores, and suffer from low rates of diffusion leading to extremely long process times (often several days) and poor selectivity, especially in the 0-1000 Da molecular weight cut-off range. Here, the fabrication of large-area (cm2 ) nanoporous atomically thin membranes (NATMs) is reported, by transferring graphene synthesized using scalable chemical vapor deposition (CVD) to polycarbonate track-etched supports. After sealing defects introduced during transfer/handling by interfacial polymerization, a facile oxygen-plasma etch is used to create size-selective pores (≤1 nm) in the CVD graphene. Size-selective separation and desalting of small model molecules (≈200-1355 Da) and proteins (≈14 000 Da) are demonstrated, with ≈1-2 orders of magnitude increase in permeance compared to state-of-the-art commercial membranes. Rapid diffusion and size-selectivity in NATMs offers transformative opportunities in purification of drugs, removal of residual reactants, biochemical analytics, medical diagnostics, therapeutics, and nano-bio separations.

8.
Adv Mater ; 29(19)2017 May.
Article in English | MEDLINE | ID: mdl-28306180

ABSTRACT

Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large-area (≈0.2 cm2 ) single-crystalline graphene membranes. A novel, polymer-free picture frame assisted technique, coupled with a stress-inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well-defined cylindrical ≈200 nm pores. Diffusion-driven flow shows selective transport of ≈0.66 nm hydrated K+ and Cl- ions over ≈1 nm sized small molecules, indicating the presence of selective sub-nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub-nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting.

9.
Nano Lett ; 15(5): 3254-60, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25915708

ABSTRACT

Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes for nanofiltration, desalination, and other separation processes.


Subject(s)
Graphite/chemistry , Membranes/chemistry , Water/chemistry , Ions/chemistry , Membranes/ultrastructure , Molecular Dynamics Simulation , Nanopores/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...