Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(49): 46062-46069, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31746194

ABSTRACT

Considering a strict global environmental regulation, fluorescent quantum dots (QDs) as key visible emitters in the next-generation display field should be compositionally non-Cd. When compared to green and red emitters obtainable from size-controlled InP QDs, development of non-Cd blue QDs remains stagnant. Herein, we explore the synthesis of non-Cd, ZnSe-based QDs with binary and ternary compositions toward blue photoluminescence (PL). First, the size increment of binary ZnSe QDs is attempted by a multiply repeated growth until blue PL is attained. Although this approach offers a relevant blue color, excessively large-sized ZnSe QDs inevitably entail a low PL quantum yield. As an alternative strategy to the above size enlargement, the alloying of high-band gap ZnSe with lower-band gap ZnTe in QD synthesis is carried out. These alloyed ternary ZnSeTe QDs after ZnS shelling exhibit a systematically tunable PL of 422-500 nm as a function of Te/Se ratio. Analogous to the state-of-the-art heterostructure of InP QDs with a double-shelling scheme, an inner shell of ZnSe is newly inserted with different thicknesses prior to an outer shell of ZnS, where the effects of the thickness of ZnSe inner shell on PL properties are examined. Double-shelled ZnSeTe/ZnSe/ZnS QDs with an optimal thickness of the ZnSe inner shell are then employed for all-solution-processed fabrication of a blue QD light-emitting diode (QLED). The present blue QLED as the first ZnSeTe QD-based device yields a peak luminance of 1195 cd/m2, a current efficiency of 2.4 cd/A, and an external quantum efficiency of 4.2%, corresponding to the record values reported from non-Cd blue devices.

2.
Nanoscale ; 10(14): 6300-6305, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29577132

ABSTRACT

To date, most of the studies on quantum dot-light-emitting diodes (QLEDs) have been dedicated to the fabrication of high-efficiency monochromatic devices. However, for the ultimate application of QLEDs to the next-generation display devices, QLEDs should possess a full-color emissivity. In this study, we report the fabrication of all-solution-processed full-color-capable white QLEDs with a standard device architecture, where sequentially stacked blue (B)/green (G)/red (R) quantum dot (QD)-emitting layers (EMLs) are sandwiched by poly(9-vinylcarbazole) as the hole transport layer and ZnO nanoparticles (NPs) as the electron transport layer. To produce interlayer mixing-free, well-defined B/G/R QD layering assemblies via successive spin casting, an ultrathin ZnO NP buffer is inserted between different-colored QD layers. The present full-color-capable white QLED exhibits high device performance with the maximum values of 16 241 cd m-2 for luminance and 6.8% for external quantum efficiency. The promising results indicate that our novel EML design of ZnO NP buffer-mediated QD layer stacking may afford a viable means towards bright, efficient full-color-capable white devices.

3.
RSC Adv ; 8(18): 10057-10063, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-35540847

ABSTRACT

Silica is the most commonly used oxide encapsulant for passivating fluorescent quantum dots (QDs) against degradable conditions. Such a silica encapsulation has been conventionally implemented via a Stöber or reverse microemulsion process, mostly targeting CdSe-based QDs to date. However, both routes encounter a critical issue of considerable loss in photoluminescence (PL) quantum yield (QY) compared to pristine QDs after silica growth. In this work, we explore the embedment of multishelled InP/ZnSeS/ZnS QDs, whose stability is quite inferior to CdSe counterparts, in a silica matrix by means of a tetramethyl orthosilicate-based, waterless, catalyst-free synthesis. It is revealed that the original QY (80%) of QDs is nearly completely retained in the course of the present silica embedding reaction. The resulting QD-silica composites are then placed in degradable conditions such UV irradiation, high temperature/high humidity, and operation of an on-chip-packaged light-emitting diode (LED) to attest to the efficacy of silica passivation on QD stability. Particularly, the promising results with regard to device efficiency and stability of the on-chip-packaged QD-LED firmly suggest the effectiveness of the present silica embedding strategy in not only maximally retaining QY of QDs but effectively passivating QDs, paving the way for the realization of a highly efficient, robust QD-LED platform.

4.
Chem Commun (Camb) ; 53(29): 4088-4091, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28349135

ABSTRACT

To realize blue emission-capable non-Cd I-III-VI quantum dots (QDs), we explore the synthesis of ternary Cu-Ga-S (CGS) QDs and subsequent quaternary Zn-Cu-Ga-S (ZCGS) via Zn alloying into a CGS host. The resulting ZCGS/ZnS core/shell QDs possess not only Zn content-dependent tunable emissions in the azure-to-blue range but also exceptional quantum yields of 78-83%.

5.
Opt Lett ; 41(17): 3984-7, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607953

ABSTRACT

We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849 cd/m2, a current efficiency of 4.2 cd/A, and an external quantum efficiency of 2.5%.

6.
Adv Mater ; 28(25): 5093-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27135303

ABSTRACT

Using a single emitter of Cu-Ga-S/ZnS quantum dots, all-solution-processed white electroluminescent lighting device that not only exhibits the record quantities of 1007 cd m(-2) in luminance and 1.9% in external quantum efficiency but also possesses satisfactorily high color rendering indices of 83-88 is demonstrated.

7.
J Nanosci Nanotechnol ; 13(9): 6011-5, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24205590

ABSTRACT

This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

8.
Nanotechnology ; 24(4): 045607, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23299514

ABSTRACT

We report on the synthesis of highly fluorescent double-ZnS-shell-capped, yellow-emitting Cu-In-S quantum dots (QDs) with a surprisingly high quantum yield of 92%, the preparation of a free-standing QD-polymethylmethacrylate composite plate, and the application of the QD plate in the fabrication of QD-based white-light-emitting diodes (WLEDs). A free-standing QD plate with QDs embedded uniformly inside a polymeric matrix is used to fabricate a remote-type, resin-free WLED. The QD plate-based WLED displays a high luminous efficiency; however, it suffers from a significantly unstable device performance due to QD degradation upon prolonged photo-excitation. An exceptional operational stability of the QD plate-based WLED is realized by generating hybrid double layers of an organic adhesion layer and a gas barrier layer of sol-gel-derived silica, rendering the QD plate impermeable to oxygen. Our success in achieving a color converter robust against photo-degradation and applying it in the fabrication of a reliable QD-based LED is greatly encouraging as regards the development of next-generation QD-based LED lighting sources.


Subject(s)
Lighting/instrumentation , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Quantum Dots , Semiconductors , Equipment Design , Equipment Failure Analysis , Light , Nanomedicine , Polymers/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...