Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 90(5): 674-84, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21956618

ABSTRACT

Multidrug and toxin extrusion 2 (MATE2-K (SLC47A2)), a polyspecific organic cation exporter, facilitates the renal elimination of the antidiabetes drug metformin. In this study, we characterized genetic variants of MATE2-K, determined their association with metformin response, and elucidated their impact by means of a comparative protein structure model. Four nonsynonymous variants and four variants in the MATE2-K basal promoter region were identified from ethnically diverse populations. Two nonsynonymous variants-c.485C>T and c.1177G>A-were shown to be associated with significantly lower metformin uptake and reduction in protein expression levels. MATE2-K basal promoter haplotypes containing the most common variant, g.-130G>A (>26% allele frequency), were associated with a significant increase in luciferase activities and reduced binding to the transcriptional repressor myeloid zinc finger 1 (MZF-1). Patients with diabetes who were homozygous for g.-130A had a significantly poorer response to metformin treatment, assessed as relative change in glycated hemoglobin (HbA1c) (-0.027 (-0.076, 0.033)), as compared with carriers of the reference allele, g.-130G (-0.15 (-0.17, -0.13)) (P=0.002). Our study showed that MATE2-K plays a role in the antidiabetes response to metformin.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacokinetics , Metformin/pharmacokinetics , Organic Cation Transport Proteins/genetics , Adult , Aged , Alleles , Animals , Female , Genetic Variation , Glycated Hemoglobin/metabolism , HCT116 Cells , HEK293 Cells , Haplotypes , Humans , Hypoglycemic Agents/pharmacology , LLC-PK1 Cells , Luciferases/metabolism , Male , Metformin/pharmacology , Middle Aged , Polymorphism, Genetic , Promoter Regions, Genetic , Racial Groups/genetics , Retrospective Studies , Swine , Treatment Outcome
2.
J Biomech ; 22(11-12): 1279-84, 1989.
Article in English | MEDLINE | ID: mdl-2625429

ABSTRACT

An optimal shape of the metal stem of a cemented total hip prosthesis minimizing stress concentration in the cement layer was searched for. A gradient projection method of numerical optimization and a finite element method of stress analysis were employed. A two-dimensional model of the femoral part of a total hip prosthesis was derived equivalent to a simplified three-dimensional axisymmetric model. The result of the stress analysis of the two-dimensional model compared favorably with that of the three-dimensional axisymmetric model. Using this two-dimensional model, an optimal shape of the stem, minimizing stress concentration in the cement layer, was obtained by a gradient projection method and the shape was checked again by the three-dimensional finite element analysis. The resulting optimal shape of the stem profile was in good agreement with conventional ones, except in the proximal region where a significant amount of stress reduction in the cement layer was achieved by tapering the stem to the limit that the stem still could withstand the increased stem stress.


Subject(s)
Bone Cements , Hip Prosthesis , Humans , Mathematics , Models, Biological , Prosthesis Design , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...