Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1356073, 2024.
Article in English | MEDLINE | ID: mdl-38660096

ABSTRACT

Introduction: Transcranial direct current stimulation (tDCS) may effectively preserve and improve cognitive function in patients with mild cognitive impairment (MCI). Research has shown that Individual brain characteristics can influence the effects of tDCS. Computer three-dimensional brain modeling based on magnetic resonance imaging (MRI) has been suggested as an alternative for determining the most accurate tDCS electrode position based on the patients' individual brain characteristics to enhance tDCS effects. Therefore, this study aims to determine the feasibility and safety of applying tDCS treatment using optimized and personalized tDCS electrode positions in patients with Alzheimer's disease (AD)-induced MCI using computer modeling and compare the results with those of a sham group to improve cognitive function. Method: A prospective active-sham group feasibility study was set to recruit 40 participants, who will be randomized into Optimized-tDCS and Sham-tDCS groups. The parameters for tDCS will be 2 mA (disk electrodes R = 1.5 cm) for 30 min during two sets of 15 sessions (2 weeks of resting period in between), using two electrodes in pairs. Using computer modeling, the tDCS electrode positions of each participant will be personalized. Outcome measurements are going to be obtained at three points: baseline, first post-test, and second post-test. The AD assessment scale-cognitive subscale (ADAS-Cog) and the Korean version of Mini-Mental State Examination (K-MMSE), together with other secondary outcomes and safety tests will be used. Discussion: For the present study, we hypothesize that compared to a sham group, the optimized personalized tDCS application would be effective in improving the cognitive function of patients with AD-induced MCI and the participants would tolerate the tDCS intervention without any significant adverse effects.Clinical trial registration: https://cris.nih.go.kr, identifier [KCT0008918].

2.
Front Neurosci ; 17: 1328727, 2023.
Article in English | MEDLINE | ID: mdl-38192515

ABSTRACT

Introduction: Transcranial direct current stimulation (tDCS) has shown positive but inconsistent results in stroke rehabilitation. This could be attributed to inter-individual variations in brain characteristics and stroke lesions, which limit the use of a single tDCS protocol for all post-stroke patients. Optimizing the electrode location in tDCS for each individual using magnetic resonance imaging (MRI) to generate three-dimensional computer models and calculate the electric field (E-field) induced by tDCS at a specific target point in the primary motor cortex may help reduce these inconsistencies. In stroke rehabilitation, locating the optimal position that generates a high E-field in a target area can influence motor recovery. Therefore, this study was designed to determine the effect of personalized tDCS electrode positions on hand-knob activation in post-stroke patients. Method: This is a crossover study with a sample size of 50 participants, who will be randomly assigned to one of six groups and will receive one session of either optimized-active, conventional-active, or sham tDCS, with 24 h between sessions. The tDCS parameters will be 1 mA (5 × 5 cm electrodes) for 20 min. The motor-evoked potential (MEP) will be recorded before and after each session over the target area (motor cortex hand-knob) and the MEP hotspot. The MEP amplitude at the target location will be the primary outcome. Discussion: We hypothesize that the optimized-active tDCS session would show a greater increase in MEP amplitude over the target area in patients with subacute and chronic stroke than conventional and sham tDCS sessions.Clinical trial registration: https://cris.nih.go.kr, identifier KCT0007536.

3.
Case Rep Endocrinol ; 2022: 4044602, 2022.
Article in English | MEDLINE | ID: mdl-35083088

ABSTRACT

An adrenal myelolipoma presenting with suspicious features may pose a diagnostic challenge to surgeons and endocrinologists. In this case report of an adult patient with undiagnosed congenital adrenal hyperplasia presenting with bilateral adrenal masses, we review his radiographic and clinical findings which were highly suspicious for adrenal malignancy. Features of adrenal myelolipoma that may resemble malignant lesions are reviewed. This case report highlights important features of adrenal myelolipoma that the surgeon and endocrinologist should be aware of. The importance of avoiding overtreating adrenal myelolipomas presenting as tumors of uncertain malignant potential is crucial.

4.
Org Lett ; 22(11): 4190-4195, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32383611

ABSTRACT

Tetrasubstituted carbon containing two different halogen substituents was constructed in a single-step operation by utilizing the carbene-like reactivity of dioxaphospholene through the tandem reaction of electrophilic and nucleophilic halogenating reagents. It was crucial to devise non-dealkylatable phosphoramidite, which enabled the efficient formation of geminal chlorofluorides from various 1,2-diketones with (PhSO2)2NF and n-Bu4NCl. In addition, selective functionalization of the chlorine substituent was demonstrated, and the absence of halogen scrambling was confirmed.

5.
J Biochem Mol Biol ; 40(4): 459-66, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17669260

ABSTRACT

The cDNA sequence of the Japanese flounder (Paralychthys olivaceus) IgD has been previously reported (GenBank accession no. AB052658) and this was followed by the detection of IgD mRNA expression in some flounder organ tissues. However, it has not been determined whether the flounder IgD gene is virtually expressed into IgD protein. To characterize the flounder immunoglobulins utilized in elucidating the mechanism, evolution and diversity of the flounder immune system, antibodies specific to IgD and IgM were necessary. In the present study, partial flounder recombinant IgD (rIgD), IgM (rIgM) and the conserved regions of IgD and IgM (rCIg) were produced by cloning the cDNA sequence using isotype specific primers which were designed to produce unique fragments of IgD and IgM specific amino acid sequences. The production of recombinant Igs was ascertained by SDS-gel electrophoresis and immunoblot analysis using anti-T7 d Taq antibody. The produced recombinant Igs were purified using affinity columns, and used as immunogens. Antibodies specific to the isotype of flounder Igs were generated by immunizing rabbits with rfIgs and the antibodies produced were identified by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Specificities of the generated antibodies were evaluated by testing cross-reactivity between recombinant IgM and IgD. By ELISA, rabbit antibodies against the rfIgD fragment (anti-rfIgD) failed to recognize any kind of flounder serum Igs, whereas respective antibodies against rfCIg (anti-rfCIg) and rfIgM fragments (anti-rfIgM) reacted with serum Igs. Likewise, in immunoblot assays, though anti-rfIgD did not, both anti-rfCIg and anti-rfIgM bound with the ~85 kd flounder IgM heavy chain. By flow cytometry analysis, anti-rfCIg, anti-rfIgD and anti-rfIgM reacted with 6%, 3% and 6.5% of cells, respectively, suggesting that flounder IgD is not secreted in serum but expressed on flounder B-like cell surfaces as in mammals. Antibodies produced against recombinant flounder Igs could be used to develop sandwich assay systems for detecting flounder Igs and for further investigating the flounder immune system.


Subject(s)
Flounder/genetics , Immunoglobulin D/biosynthesis , Immunoglobulin D/genetics , Animals , Antibodies/immunology , Antibody Specificity/immunology , Cell Separation , Cloning, Molecular , DNA, Complementary , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Genetic Vectors , Immunoglobulin D/isolation & purification , Immunoglobulin M/isolation & purification , Immunoglobulin M/metabolism , Kidney/cytology , Molecular Sequence Data , Recombinant Proteins/isolation & purification
6.
J Biochem Mol Biol ; 37(3): 314-9, 2004 May 31.
Article in English | MEDLINE | ID: mdl-15469712

ABSTRACT

Flounder (Paralichthys olivaceus) Immunoglobulins (Igs) were purified from the serum of mouse IgG-immunized flounder by using affinity chromatography. Under denaturing conditions in SDS-PAGE, the flounder Igs appeared to be composed of 2 heavy (H) chains (72 and 77 kDa) and two light (L) chains (26 and 28 kDa). Monoclonal antibodies (MAbs) were produced by the fusion of myeloma cells (SP2/0) with Balb/c mouse spleen cells that were previously sensitized against affinity-purified flounder Igs. In a Western blot analysis, the produced MAbs, FIM511, FIM519, and FIM562 recognized both the 72 and 77 kDa H chains, 26 kDa, and 28 kDa L chain, respectively. Mouse antiserum against flounder Igs reacted more strongly with the L chain of 28 kDa than with 26 kDa, suggesting that the 28 kDa molecule is more immunogenic than the 26 kDa L chain molecule. In a FACS analysis, the ratios of the Ig+ cell population in the flounder head kidney and spleen cells were 49% and 24%, respectively. Unexpectedly, however, the ratios of the Ig+ B-like cell population in the flounder were not significantly augmented, even after the immunization of an immunogenic antigen. This suggests that the humoral immune response in fish could be considerably different from that in mammals. The produced MAbs in this study would be useful in characterizing flounder Ig+ B-like cells and in developing flounder Ig detecting an immunoassay system.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Flounder/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Separation , Flow Cytometry , Immunoglobulin Heavy Chains/isolation & purification , Immunoglobulin Light Chains/isolation & purification , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...