Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28649407

ABSTRACT

Bacteria often adhere to surfaces, where they form communities known as biofilms. Recently, it has been shown that biofilm formation initiates with the microscopically heterogeneous deposition of a skeleton of extracellular polymeric substances (EPS) by individual cells crawling on the surface, followed by growth of the biofilm into a surface-covering continuum. Here we report microfluidic experiments with Pseudomonas aeruginosa biofilms showing that their "hidden" heterogeneity can affect the later dynamics of their disruption. Using controlled air bubbles as a model for mechanical insult, we demonstrate that biofilm disruption is strongly dependent on biofilm age, and that disruption to early-stage biofilms can take the shape of a semi-regular pattern of ~15 µm diameter holes from which bacteria have been removed. We explain hole formation in terms of the rupture and retreat of the thin liquid layer created by the long bubble, which scrapes bacteria off the surface and rearranges their distribution. We find that the resulting pattern correlates with the spatial distribution of EPS: holes form where there is less EPS, whereas regions with more EPS act as strongholds against the scraping liquid front. These results show that heterogeneity in the microscale EPS skeleton of biofilms has profound consequences for later dynamics, including disruption. Because few attached cells suffice to regrow a biofilm, these results point to the importance of considering microscale heterogeneity when designing and assessing the effectiveness of biofilm removal strategies by mechanical forces.

2.
Sci Rep ; 6: 33115, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27650454

ABSTRACT

Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.


Subject(s)
Escherichia coli/physiology , Pseudomonas aeruginosa/metabolism , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Recombinant Proteins/metabolism
3.
J Nanosci Nanotechnol ; 16(5): 4357-61, 2016 May.
Article in English | MEDLINE | ID: mdl-27483757

ABSTRACT

Palladium-cobalt-phosphorus (PdCoP) catalysts supported on carbon (Ketjen Black) were investigated as a cathode catalyst for oxygen reduction reaction (ORR) in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The PdCoP catalyst was synthesized via a modified polyol process in teflon-sealed reactor by microwave-heating. From X-ray diffraction and transmission electron microscopic analysis, the PdCoP catalyst exhibits a face-centered cubic structure, similar to palladium (Pd), which is attributed to form a good solid solution of Co atoms and P atoms in the Pd lattice. The PdCoP nanoparticles with average diameter of 2.3 nm were uniformly distributed on the carbon support. The electrochemical surface area (ECSA) and ORR activity of PdP, PdCo and PdCoP catalysts were measured using a rotating disk electrode technique with cyclic voltammetry and the linear sweep method. The PdCoP catalysts showed the highest performances for ECSA and ORR, which might be attributed both to formation of small nanoparticle by phosphorus atom and to change in lattice constant of Pd by cobalt atom. Furthermore, The HT-PEMFCs single cell performance employing PdCoP catalyst exhibited an enhanced cell performance compared to a single cell using the PdP and PdCo catalysts. This result indicates the importance of electric and geometric control of Pd alloy nanoparticles that can improve the catalytic activity. This synergistic combination of Co and P with Pd could provide the direction of development of non-Pt catalyst for fuel cell system.

4.
J Anim Sci Technol ; 56: 12, 2014.
Article in English | MEDLINE | ID: mdl-26290701

ABSTRACT

This study investigated changes in gene expression by dietary fat source, i.e., beef tallow, soybean oil, olive oil, and coconut oil (each 3% in feed), in both male and female growing-finishing pigs. Real-time PCR was conducted on seven genes (insulin receptor; INSR, insulin receptor substrate; IRS, phosphatidylinositol (3,4,5)-triphosphate; PIP3, 3-phosphoinositide-dependent protein kinase-1; PDK1, protein kinase B; Akt, forkhead box protein O1; FOXO1 and cGMP-inhibited 3', 5'-cyclic phosphodiesterase; PDE3) located upstream of the insulin signaling pathway in the longissimus dorsi muscle (LM) of pigs. The INSR, IRS, PIP3, and PDE3 genes showed significantly differential expression in barrow pigs. Expression of the PIP3 and FOXO1 genes was significantly different among the four dietary groups in gilt pigs. In particular, the PIP3 gene showed the opposite expression pattern between barrow and gilt pigs. These results show that dietary fat source affected patterns of gene expression according to animal gender. Further, the results indicate that the type of dietary fat affects insulin signaling-related gene expression in the LM of pigs. These results can be applied to livestock production by promoting the use of discriminatory feed supplies.

5.
Adv Mater ; 26(11): 1711-8, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24375685

ABSTRACT

Smooth, durable, ultrathin antifouling layers are deposited onto commercial reverse osmosis membranes without damaging them and they exhibit a fouling reduction. A new synergistic approach to antifouling, by coupling surface modification and drinking-water-level chlorination is enabled by the films' unique resistance against chlorine degradation. This approach substantially enhances longer-term fouling resistance compared with surface modification or chlorination alone, and can reduce freshwater production cost and its collateral toxicity to marine biota.


Subject(s)
Biofouling/prevention & control , Chlorine Compounds/chemistry , Seawater/chemistry , Seawater/microbiology , Water Purification/instrumentation , Water Purification/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chlorine Compounds/pharmacology , Drinking Water , Glass/chemistry , Halogenation , Membranes, Artificial , Molecular Structure , Movement/drug effects , Polymers/chemistry , Pyridines/chemistry , Time Factors , Vibrio/drug effects , Vibrio/isolation & purification , Vibrio/physiology , Water Pollutants/chemistry , Water Pollutants/isolation & purification
6.
Phys Rev Lett ; 99(4): 044501, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678369

ABSTRACT

A perm-selective nanochannel could initiate concentration polarization near the nanochannel, significantly decreasing (increasing) the ion concentration in the anodic (cathodic) end of the nanochannel. Such strong concentration polarization can be induced even at moderate buffer concentrations because of local ion depletion (therefore thicker local Debye layer) near the nanochannel. In addition, fast fluid vortices were generated at the anodic side of the nanochannel due to the nonequilibrium electro-osmotic flow (EOF), which was at least approximately 10x faster than predicted from any equilibrium EOF. This result corroborates the relation among induced EOF, concentration polarization, and limiting-current behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...