Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079467

ABSTRACT

Our decisions are guided by how we perceive the value of an option, but this evaluation also affects how we move to acquire that option. Why should economic variables such as reward and effort alter the vigor of our movements? In theory, both the option that we choose and the vigor with which we move contribute to a measure of fitness in which the objective is to maximize rewards minus efforts, divided by time. To explore this idea, we engaged marmosets in a foraging task in which on each trial they decided whether to work by making saccades to visual targets, thus accumulating food, or to harvest by licking what they had earned. We varied the effort cost of harvest by moving the food tube with respect to the mouth. Theory predicted that the subjects should respond to the increased effort costs by choosing to work longer, stockpiling food before commencing harvest, but reduce their movement vigor to conserve energy. Indeed, in response to an increased effort cost of harvest, marmosets extended their work duration, but slowed their movements. These changes in decisions and movements coincided with changes in pupil size. As the effort cost of harvest declined, work duration decreased, the pupils dilated, and the vigor of licks and saccades increased. Thus, when acquisition of reward became effortful, the pupils constricted, the decisions exhibited delayed gratification, and the movements displayed reduced vigor.


Subject(s)
Callithrix , Movement , Humans , Animals , Reaction Time/physiology , Movement/physiology , Time , Reward , Decision Making/physiology
2.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-36798274

ABSTRACT

Our decisions are guided by how we perceive the value of an option, but this evaluation also affects how we move to acquire that option. Why should economic variables such as reward and effort alter the vigor of our movements? In theory, both the option that we choose and the vigor with which we move contribute to a measure of fitness in which the objective is to maximize rewards minus efforts, divided by time. To explore this idea, we engaged marmosets in a foraging task in which on each trial they decided whether to work by making saccades to visual targets, thus accumulating food, or to harvest by licking what they had earned. We varied the effort cost of harvest by moving the food tube with respect to the mouth. Theory predicted that the subjects should respond to the increased effort costs by choosing to work longer, stockpiling food before commencing harvest, but reduce their movement vigor to conserve energy. Indeed, in response to an increased effort cost of harvest, marmosets extended their work duration, but slowed their movements. These changes in decisions and movements coincided with changes in pupil size. As the effort cost of harvest declined, work duration decreased, the pupils dilated, and the vigor of licks and saccades increased. Thus, when acquisition of reward became effortful, the pupils constricted, the decisions exhibited delayed gratification, and the movements displayed reduced vigor. Significance statement: Our results suggest that as the brainstem neuromodulatory circuits that control pupil size respond to effort costs, they alter computations in the brain regions that control decisions, encouraging work and delaying gratification, and the brain regions that control movements, reducing vigor and suppressing energy expenditure. This coordinated response suggests that decisions and actions are part of a single control policy that aims to maximize a variable relevant to fitness: the capture rate.

3.
Micromachines (Basel) ; 13(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35630162

ABSTRACT

A titanium-indium tin oxide (TITO) multilayer reflector was investigated to improve the light efficiency of high-power, near-infrared, light-emitting diodes (NIR-LEDs). The TITO/Ag was fabricated by combining a patterned TITO and an omnidirectional reflector (ODR). For fabricating a high-power NIR-LED, the wafer bond process required the TITO reflective structure, which has patterns filled by AlAu contact metal, bonded directly to the Ag reflector deposited on the silicon wafer. Among Ag-based single- and multilayer reflectors, the TITO/Ag showed the highest reflectance (R = 96%), which was favorable for wafer-bonded high-power NIR-LEDs. Therefore, the TITO/Ag reflector enabled the production of wafer-bonded NIR-LED chips that exhibit superior output performance (190 mW) compared with conventional cases using a single Ag reflector.

4.
J Nanosci Nanotechnol ; 14(8): 6124-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936070

ABSTRACT

We investigated 590 nm light-emitting diodes appropriate for full-color display applications in terms of their electrical and optical behaviors during operation according to their Mg doping profile in the p-cladding layer. As the hole concentration in the "b" zone of the p-cladding layer is increased from 3.4 x 10(17) to 6.7 x 10(17), the light output power increases by 41% due to the enhancement of the hole injection into the active region and also due to the minimization of the carrier overflow problem. However, at an oversaturation of Mg doping with excess [Cp2Mg]/[III] in the "b" zone, the internal quantum efficiency degrades because of the decrease in hole concentration because of the oversaturated material problem.

5.
J Nanosci Nanotechnol ; 13(1): 564-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23646774

ABSTRACT

We investigate Ga0.33In0.67P quantum dot structures appropriate for special lighting applications in terms of structural and optical behaviors. The Ga0.33In0.67P materials form from 2-dimentional to 3-dimensional dots as the nominal growth thickness increases from 0.5 nm to 6.0 nm, indicating a Stranski-Krastanov growth mode. As the ambient temperature is increased to 300 K, the PL spectrum of the B-type dots is annihilated quickly because the large dot size induces a defect-related nonradiative recombination process. In contrast, the PL spectrum of the A-type dots is well maintained to 300 K. These data indicate that the Ga0.33In0.67P material is appropriate for an active layer of 700 nm light emitters.


Subject(s)
Crystallization/methods , Gallium/chemistry , Indium/chemistry , Phosphines/chemistry , Quantum Dots , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...