Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851502

ABSTRACT

Increasing multidrug-resistant pathogenic microbial around the world become a global problem, making it imperative to develop effective methods for bacterial inactivation in wastewater. In this study, we propose a multifunctional photoelectrochemical (PEC) system to successfully disinfect microbial cells and degrade orange (II) dyes. CoOx NP were synthesized by spin-coating onto hydrothermally synthesized TiO2 nanorod arrays followed by electrodeposited NiFe-LDH to develop the NiFe-LDH/CoOx NP-TiO2 NRs. Interestingly, spin-coated CoOx NP-TiO2 NRs exhibited a 1.5-fold enhancement in photocurrent (1.384 mA/cm2) than pristine TiO2 NRs (0.92 mA/cm2). A NiFe-layered double hydroxide (LDH) cocatalysts layer further exhibits the maximum photocurrent density of 1.64 mA/cm2 with IPCE of 84.5% at 1.0 VAg/AgCl at 380 nm. Furthermore, NiFe-LDH/CoOx-TiO2 NR photoanodes were effectually employed for photoelectrochemical bacteria disinfection and organic pollutant removals. With NiFe-LDH/CoOx-TiO2 NR, 99% (120 min) bacterial inactivation and 99% (60 min) orange II dye decomposition efficiency was achieved. Superoxide radicals (-O2•), hydroxyl radicals (HO•), and holes (h+) played a critical role in the PEC degradation systems. Due to the synergy between NiFe-LDH cocatalyst and CoOx interlayer, surface water oxidation reactions were accelerated over NiFe-LDH/CoOx NP-TiO2 NRs. The charge transport process in NiFe-LDH/CoOx NP-TiO2 NRs photoanode-based PEC system was proposed in detail.


Subject(s)
Electrodes , Titanium , Wastewater , Titanium/chemistry , Wastewater/chemistry , Catalysis , Electrochemical Techniques/methods , Water Pollutants, Chemical/chemistry , Hydroxides/chemistry , Waste Disposal, Fluid/methods , Photochemical Processes , Nanotubes/chemistry , Coloring Agents/chemistry , Azo Compounds/chemistry , Water Purification/methods , Disinfection/methods
2.
Chemosphere ; 360: 142450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801902

ABSTRACT

Herein, we successfully synthesized Hf/Zr co-doping on Fe2O3 nanorod photocatalyst by a hydrothermal process and quenching methods. The synergistic roles of Hf and Zr double-doping on the bacteria inactivation test and decomposition of organic pollutants were investigated in detail for the 1 wt% CoOx loaded Hf/Zr-Fe2O3 NRs and CuOx/CoOx loaded Hf/Zr-Fe2O3 NRs photocatalyst. Initially, the rod-like porous morphology of the Hf/Zr-doped Fe2O3 NRs was produced via a hydrothermal method at various Hf co-doping (0, 2, 4, 7 and 10)%. Further, CoOx and CuOx loaded by a wet impregnation approach on the Hf/Zr-Fe2O3 NRs and a highly photoactive Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst were developed. After the Hf(4)/Zr-Fe2O3 [CoOx/CuOx] NRs photocatalyst treatment, the Bio-TEM imagery of bacterial cells showed extensive morphological deviations in cell membranes. Hf(4)/Zr-Fe2O3 NR achieved 84.1% orange II degradation upon 3 h illumination, which is higher than that of Hf-Fe2O3 and Zr-Fe2O3 (68.7 and 73.5%, respectively). Additionally, the optimum sample, Hf(4)/Zr-Fe2O3 [CoOx/CuOx] photocatalyst, exhibited 95.5% orange II dye degradation after light radiation for 3 h. Optimized Hf(4)/Zr-Fe2O3 [CoOx/CuOx] catalysts exhibited 99.9% and 99.7% inactivation of E. coli and S. aureus with 120 min, respectively. Further, scavenger experiments revealed that the electrons are the primary responsible species for photocatalytic kinetics. This work will provide a rapid method for the development of high photocatalytic performance materials for bacterial disinfection and organic degradation.


Subject(s)
Anti-Bacterial Agents , Copper , Ferric Compounds , Nanotubes , Zirconium , Zirconium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Nanotubes/chemistry , Ferric Compounds/chemistry , Copper/chemistry , Copper/pharmacology , Hafnium/chemistry , Oxides/chemistry , Cobalt/chemistry , Photochemical Processes
3.
Chemosphere ; 341: 140057, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673185

ABSTRACT

In this study, in situ silver (Ag) - porous ZnO photocatalysts were synthesized via solvothermal and post-annealing treatment. The formation of the porous ZnO structure due to the removal of organic moieties from the inorganic-organic hybrids Ag-ZnS(en)0.5 during the annealing process. The optimal Ag-ZnO photocatalyst showed excellent photocatalytic degradation activity, with 95.5% orange II dye and 97.2% bisphenol A (BPA) degradation under visible light conditions. Additionally, the photocatalytic inactivation of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) led to a 97% inactivation rate after 2 h under dark conditions. Trapping experiments suggest that the superoxide anion (O2-) radicals are the main active species to degrade the organic dye. The improved photocatalytic dye degradation activity and inactivation of bacteria were attributed to the synergistic effect of Ag and porous ZnO structure, increased surface area, and efficiently separated the photoexcited charge carriers. This work could provide an effective strategy for the synthesis of porous structures toward organic pollutant degradation and bacterial inactivation in wastewater.


Subject(s)
Environmental Pollutants , Zinc Oxide , Escherichia coli , Porosity , Staphylococcus aureus , Bacteria
4.
Chemosphere ; 341: 139968, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643649

ABSTRACT

Photoelectrochemical (PEC) water splitting by semiconductor photoanodes is limited by sluggish water oxidation kinetics coupled with serious charge recombinations. In this paper, an effective strategy of TiO2 nanorod/nanotube nanostructured interface reconstruction, oxygen vacancies and surface modification were employed for stability and efficient charge transport in the photoanodes. Successive anodization and hydrothermal routes were adopted for the TiO2 NR/NT photoanodes interface reconstruction, followed by Au nanoparticles/clusters (Au NP) loading and hydrogen treatment. This resulted in H-Au-TiO2 NR/NT photoanodes. A three-dimensional structure of TiO2 NR on TiO2 NT/Ti foil nanotubes achieved the highest photocurrent density (1.42 mA cm-2 at 0.3 V vs. Ag/AgCl). The optimal oxygen vacancies and Au NP loading on TiO2 NR/NT exhibited 1.62 mA cm-2 photocurrent density at 0.3 V vs. Ag/AgCl in H-Au-TiO2 NR/NT photoelectrode, which is eight times higher than the TiO2 NT/Ti foil. TRPL analyses confirm the hydrogen treatments to TiO2 exhibited the emission lifetime (46 ns) in the H-Au-TiO2 NR/NT photoanodes due to newly formed lower Ti3+-related trapped electron states and Au NP. The optimum H-Au (4)-TiO2 NR/NT photoanodes achieved 95% photoelectrochemical (PEC) bacterial inactivation and effective PEC water splitting with (278 and 135.4) µmol of hydrogen and oxygen generation, respectively. In this study, oxygen vacancies combined with gold particles and interface reconstruction provide an innovative way to design effective photoelectrodes.


Subject(s)
Metal Nanoparticles , Nanotubes , Gold , Hydrogen , Oxygen
5.
ACS Appl Mater Interfaces ; 15(31): 37361-37370, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37500097

ABSTRACT

Solar energy is the most promising, efficient, environmentally friendly energy source with the potential to meet global demand due to its non-polluting nature. Herein, a porous Zn1-xCdxSe/ZnO nanorod (NR) heterojunction was synthesized by hydrothermal and low-temperature solvothermal methods. First, the ZnO NR was grown on a Zinc foil, and an inorganic-organic hybrid ZnSe(en)0.5 material was developed by the low-temperature solvothermal method. In this work, the ZnO NR acted as a base material and a building block for the growth of ZnSe(en)0.5. Moreover, after the solvothermal process, the reduced Se2- reacts with the ZnO NR and forms inorganic-organic hybrid ZnSe(en)0.5. After the selenization process, the obtained material shows a red brick color due to the absorbance of excessive Se metal particles during the solvothermal process. Furthermore, in order to enhance the photoelectrochemical properties, the Cd2+ ion exchange method was applied at various temperatures (140, 160, and 180 °C for 3 h) to produce a precursor material to a porous Zn1-xCdxSe/ZnO NR nanostructure. The optimum Zn1-xCdxSe/ZnO NR-160 photoanode showed a high photocurrent density of 7.8 mA·cm-2 at -0.5 V vs. Ag/AgCl with a hydrogen evolution rate of 199 µmol·cm-2/3 h. The improved photocurrent performance was attributed to effective light absorption and prolonged recombination lifetime.

6.
Chemosphere ; 337: 139255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37356589

ABSTRACT

Hydrothermal and wet impregnation methods are presented in this study for synthesizing CoOx(1 wt%)/Sn/Zr-codoped Fe2O3 nanorod photocatalysts for the degradation of organic pollutants and deactivation of bacteria. A hydrothermal route was used to synthesize self-assembled rod-like hierarchical structures of Sn(0-6%) doped Zr-Fe2O3 NRs. Additionally, a wet impregnation method was used to load CoOx onto the surface of photocatalysts (Sn(0-6%)-doped Zr-Fe2O3 NRs). A series of 1 wt% CoOx modified Sn(0-6%)-doped Zr-Fe2O3 NRs were synthesized, characterized, and utilized for the photocatalytic decomposition of organic contaminants, along with the killing of E. coli and S. aureus. In comparison with 0, 2, and 6% Sn co-doped Zr-Fe2O3 NRs, the CoOx(1 wt%)/4%Sn/Zr-Fe2O3 NRs photocatalyst exhibited an E. coli and S. aureus inactivation efficiencies (90 and 98%). A bio-TEM study of treated and untreated bacterial cells revealed that the CoOx(1 wt%)/4%Sn/Zr-Fe2O3 NRs photocatalyst led to considerable changes in the bacterial cell membranes' morphology. The optimal CoOx(1 wt%)/Sn(4%) co-doped Zr-Fe2O3 NRs photocatalyst achieved degradation efficiencies of 98.5% and 94.6% for BPA and orange II dye, respectively. As a result, this work will provide a facile and effective method for developing visible light-active photocatalysts for bacterial inactivation and organic pollutants degradation.


Subject(s)
Escherichia coli , Nanotubes , Staphylococcus aureus , Catalysis , Light
7.
J Colloid Interface Sci ; 644: 246-255, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37119642

ABSTRACT

Herein, a porous Zn1-xCdxSe structure was developed on TiO2 nanorod (NR) array for photoelectrochemical (PEC) application. Firstly, TiO2 NR and ZnO/TiO2 NR photoanode were synthesized via a series of hydrothermal methods on FTO. Next, the solvothermal synthesis method was adopted to develop inorganic-organic hybrid ZnSe(en)0.5 on ZnO /TiO2 NR-based electrode using different concentrations of the selenium (Se). We found that the ZnO NR acts as a mother material for the formation of inorganic-organic hybrid ZnSe(en)0.5, whereas TiO2 NR acts as a building block. In order to further improve the PEC charge transfer performance, inorganic-organic hybrid ZnSe(en)0.5/TiO2 NR electrode was transferred into a porous Zn1-xCdxSe/TiO2 NR photoanode using the Cd2+ ion-exchange method. The optimized porous Zn1-xCdxSe/TiO2 NR -(2) photoanode converted from ZnSe(en)0.5 -(2) electrode (optimized Se concentration) showed a higher photocurrent density of 6.6 mA·cm-2 at applied potential 0 V vs. Ag/AgCl. The enhanced photocurrent density was owing to the effective light absorption, enhanced charge separation, delay the charge recombination, and porous structure of Zn1-xCdxSe. This work highlights the promising strategy for the synthesis of porous Zn1-xCdxSe/TiO2 NR from inorganic-organic ZnSe(en)0.5/TiO2 NR for effective charge separation and prolonging the lifetime during the photoelectrochemical reaction.

8.
J Anal Sci Technol ; 14(1): 7, 2023.
Article in English | MEDLINE | ID: mdl-36718385

ABSTRACT

Titanium dioxide (TiO2) nanorods (NRs) are well-known semiconducting and catalytic material that has been widely applied, but their toxicities have also attracted recent interest. In this study, we investigated and compared the toxic effects of TiO2 NRs and TiO2 NRs loaded with Ag or Au NPs on boar spermatozoa. As a result, sperm incubated with Ag-TiO2 NRs showed lower motility than sperm incubated with controls (with or without TiO2 NRs) or Au-TiO2 NRs. In addition, sperm viability and acrosomal integrity were defective in the presence of Ag-TiO2 NRs, and the generation of intracellular reactive oxygen species (ROS) increased significantly when spermatozoa were incubated with 20 µg/ml Ag-TiO2 NRs. We discussed in depth the charge transfer mechanism between enzymatic NADPH and Ag-TiO2 NRs in the context of ROS generation in spermatozoa. The effects we observed reflected the fertilization competence of sperm incubated with Ag-TiO2 NRs; specifically sperm penetration and embryonic development rates by in vitro fertilization were reduced by Ag-TiO2 NRs. To summarize, our findings indicate that exposure to Ag-TiO2 NRs could affect male fertilization fecundity and caution that care be exercised when using these NRs.

9.
Chemosphere ; 310: 136825, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36241102

ABSTRACT

Herein, we synthesized in-situ Zr-doped Fe2O3 NRs photocatalyst by successive simple hydrothermal and air quenching methods. The synergistic roles of CoOx (1 wt%) and Zr-doping on bacteria inactivation and model organic pollutants over Fe2O3 NRs photocatalyst were studied in detail. Initially, rod-like Zr ((0-8) %)-doped Fe2O3 NRs were produced via a hydrothermal method. CoOx was loaded onto the Zr ((0-8) %)-doped Fe2O3 NRs) surface by a wet impregnation approach. The Zr-doping conditions and CoOx loadings were judiciously optimized, and a highly photoactive CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst was developed. The CoOx(1 wt%) loaded Zr(6%)-doped Fe2O3 NRs photocatalyst revealed 99.4% inactivation efficiency compared with (0, 4 and 8)% Zr-doped Fe2O3 NRs, respectively. After CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst treatment, Bio-TEM images of bacterial cells showed extensive morphological deviations in cell membranes, compared with the non-treated ones. Additionally, the optimum CoOx(1 wt%)/Zr(6%)-doped Fe2O3 NRs photocatalyst exhibited 99.2% BPA and 98.3% orange II dye degradation after light radiation for 3 h. This work will provide a rapid method for the development of photostable catalyst materials for bacterial disinfection and organic degradation.


Subject(s)
Environmental Pollutants , Nanotubes , Oxides , Bacteria
10.
Chemosphere ; 299: 134363, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35358554

ABSTRACT

Herein, we report a CoOx-loaded Zr-doped ZnFe2O4 (CoOx/Zr-ZFO) NR photocatalyst synthesized by successive microwave and wet impregnation methods for bacterial inactivation and degradation of organic pollutants. For the first time, microwave treatment was used for Zn attachment on hydrothermally synthesized self-assembled Zr-FeOOH NRs to produce Zr-doped ZnFe2O4 (Zr-ZFO) NRs. The lowest bandgap energy (1.96 eV) enables for significant absorption in the visible light region, which helps to improve bacteria degradation inactivation efficiency. Further, various metal oxides (Cu, Ag and Co) were loaded onto the surface of photocatalysts (Zr-ZFO NRs) by a wet impregnation method. As-synthesized CoOx/Zr-ZFO-3 NRs were systematically characterized and used as photocatalysts for inactivation of E. coli and S. aureus and degradation of organic pollutants. The CoOx/Zr-ZFO-3 NR photocatalyst exhibited better inactivation efficiency (99.4 %) than other metal oxide-loaded Zr-ZFO NRs (Ag2Ox-loaded Zr-ZFO NRs (33.6 %), CuOx-loaded Zr-ZFO NRs (77.6 %)). Additionally, the optimum CoOx/Zr-ZFO-3 NR photocatalyst showed 98.3 % and 98.1 % degradation efficiencies for BPA and orange II dye, respectively, under visible light irradiation (λ ≥ 420 nm). Therefore, this work affords a novel, simple and rapid approach for the development of photocatalysts which active in visible light for bacterial disinfection and organic degradation.


Subject(s)
Environmental Pollutants , Nanotubes , Catalysis , Disinfection , Escherichia coli , Light , Microwaves , Oxides , Staphylococcus aureus
11.
ACS Omega ; 6(37): 23901-23912, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34568669

ABSTRACT

In the present study, Mo-BiVO4-loaded and metal oxide (MO: Ag2Ox, CoOx, and CuOx)-loaded Mo-BiVO4 photocatalysts were synthesized using a wet impregnation method and applied for microbial inactivation (Escherichia coli and Staphylococcus aureus) and orange II dye degradation under visible-light (VL) conditions (λ ≥ 420 nm). The amount of MO cocatalysts loaded onto the surface of the Mo-BiVO4 photocatalysts was effectively controlled by varying their weight percentages (i.e., 1-3 wt %). Among the pure Mo-BiVO4, Ag2Ox-, CoOx-, and CuOx-loaded Mo-BiVO4 photocatalysts used in bacterial E. coli and S. aureus inactivation under VL irradiation, the 2 wt % CuOx-loaded Mo-BiVO4 photocatalyst showed the highest degradation efficiency of E. coli (97%) and S. aureus (99%). Additionally, the maximum orange II dye degradation efficiency (80.2%) was achieved over the CuOx (2 wt %)-loaded Mo-BiVO4 photocatalysts after 5 h of radiation. The bacterial inactivation results also suggested that the CuO x -loaded Mo-BiVO4 nanostructure has significantly improved antimicrobial ability as compared to CuOx/BiVO4. The enhancement of the inactivation performance of CuOx-loaded Mo-BiVO4 can be attributed to the synergistic effect of Mo doping and Cu2+ ions in CuOx, which further acted as an electron trap on the surface of Mo-BiVO4 and promoted fast transfer and separation of the photoelectron (e-)/hole (h+) pairs for growth of reactive oxygen species (ROS). Furthermore, during the bacterial inactivation process, the ROS can disrupt the plasma membrane and destroy metabolic pathways, leading to bacterial cell death. Therefore, we provide a novel idea for visible-light-activated photocatalytic antibacterial approach for future disinfection applications.

12.
Article in English | MEDLINE | ID: mdl-34132526

ABSTRACT

Herein, we propose the topotactic and self-templated fabrication of Zn1-xCdxSe porous nanobelt-ZnO nanorod (termed as ZnCdSe/ZnO) photoelectrode via the cadmium (Cd2+) ion-exchange process on zinc (Zn) foil. Inorganic-organic hybrid ZnSe(en)0.5 nanobelt (NB) was synthesized on Zn foil by a facial solvothermal method at different temperatures of 140, 160, and 180 °C for 12 h. The interfacial properties and photoelectrochemical (PEC) performance of inorganic-organic ZnSe(en)0.5 NB fabricated through the Cd2+ ion-exchange method at different time durations of 6, 12, 18, and 24 h at 140 °C were investigated. The TEM analysis results indicate that the inorganic-organic ZnSe(en)0.5 NB transformed into ZnCdSe and a self-assembled ZnO formed on the Zn foil. In particular Cd2+ ion temperature (140 °C/18 h), the optimized ZnCdSe/ZnO-(F) photoelectrode shows an excellent photocurrent density of 14 mA·cm-2 at 0 V vs Ag/AgCl with 219 µmol·cm-2 hydrogen gas evolution for 3 h under 1 sun illumination. The higher photocurrent value resulted from the optimum growth of ZnO, the formation of porous ZnCdSe, and the effective electrolyte penetration for electron-hole pair separation. The photoluminescence spectroscopy shows that the photoexcited charged carriers promoted a longer lifetime. Furthermore, we provide a full account of the possible charge-transfer mechanism during PEC hydrogen production.

13.
J Colloid Interface Sci ; 581(Pt B): 751-763, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32818679

ABSTRACT

Herein, in situ zirconium-doped hematite nanocoral (Zr-Fe2O3 (I) NC) photoanode was prepared via a specially designed diluted hydrothermal approach and modified with Al3+ co-doping and electrodeposited cobalt-phosphate ("Co-Pi") cocatalyst. Firstly, an unintentional in situ Zr-Fe2O3 (I)) NC photoanode was synthesized, which achieved an optimum photocurrent density of 0.27 mA/cm2 at 1.0 V vs. RHE but possessed a more positively shifted onset potential than conventionally prepared hematite nanorod photoelectrodes. An optimized amount of aluminum co-doping suppresses the bulk as well as surface defects, which causes a negative shift in the onset potential from 0.85 V to 0.8 V vs. RHE and enhances the photocurrent density of Zr-Fe2O3(I) NC from 0.27 mA/cm2 to 0.7 mA/cm2 at 1.0 V vs. RHE. The electrodeposited Co-Pi modification further reduce the onset potential of Al co-doped Zr-Fe2O3(I) NC to 0.58 V vs. RHE and yield a maximum photocurrent of 1.1 mA/cm2 at 1.0 V vs. RHE (1.8 mA/cm2 at 1.23 V vs RHE). The improved photocurrent at low onset potential can be attributed to synergistic effect of Al co-doping and Co-Pi surface modification. Further, during photoelectrochemical water-splitting, a 137 and 67 µmol of hydrogen (H2) and oxygen (O2) evolution was achieved over the optimum Co-Pi-modified Al-co-doped Zr-Fe2O3(I) NC photoanode within 6 h. The proposed charge transfer mechanism in optimum Co-Pi-modified Alco-doped Zr-Fe2O3(I) NC photoanodes during the photoelectrochemical water splitting was also studied.

14.
Nanoscale ; 12(37): 19241-19252, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32929435

ABSTRACT

To solve energy crisis, the engineering of highly efficient and cost-effective photoanodes is urgently required for clean fuel generation. Herein, CdSe(en)0.5 (en = ethylenediamine) hybrid photoanodes were synthesized by a solvothermal approach. It was revealed that a second in situ hydrothermal treatment successfully converts cadmium foil-based inorganic-organic CdSe(en)0.5 (en = ethylenediamine) hybrid nanosheets to an oriented cadmium hydroxide crowned CdSe nanowire-decorated porous nanosheet (Cd(OH)2/CdSe NW/NS) heterostructure by dissolution and regrowth mechanisms. The alteration in second hydrothermal reaction conditions could modify the morphology and optical properties of the Cd(OH)2/CdSe NW/NS heterostructure photoanodes. The possible growth mechanism of the Cd(OH)2/CdSe NW/NS porous structure is studied at various second hydrothermal times using the control experiments of the synthesis. The optimized 3D porous Cd(OH)2/CdSe NW/NS photoanodes exhibited an outstanding photocurrent density of 6.1 mA cm-2 at 0 V vs. Ag/AgCl, which is approximately 7.6 times higher than that of the inorganic-organic CdSe(en)0.5 hybrid under light irradiation (>420 nm cut off filter). A mechanism is proposed to explain the enhanced charge separation at the Cd(OH)2/CdSe NW/NS photoanode/electrolyte interface, which is supported by PL and photoelectrochemical analyses. These findings open an avenue of phase and morphology transmutation for efficient formation of other hierarchical structures of metal selenides and sulfides. Additionally, the Al2O3 co-catalyst can act as effective hole trapping sites and improves the stability of the photoelectrode through the timely consumption of photogenerated charges, particularly holes.

15.
Environ Res ; 180: 108651, 2020 01.
Article in English | MEDLINE | ID: mdl-31648071

ABSTRACT

A hydrothermally synthesized rhodium/antimony co-doped TiO2 nanorod and titanate nanotube (RS-TONR/TNT) composite was prepared for removal of heavy metals and organic pollutants from water under visible light irradiation. The composite provides the dual function of simultaneous adsorption of heavy metal ions and enhanced degradation of dissolved organic compounds. Acid treatment transformed titanate nanotubes to irregular tubular structures distributed homogeneously over untransformed RS/TONRs. Synergistic removal and degradation was studied with various heavy metals, Orange (II) dye, and Bisphenol A. The adsorption capacity of the composite for heavy metal ions was Pb(II) > Cd(II) > Cu(II) > Zn(II). The adsorbed metals enhanced photocatalytic degradation of the organic pollutants, but Cu was most effective, with degradation exceeding 70% for the dye and 80% for Bisphenol A after 5 h of treatment. Photocatalytic activity was enhanced more by adsorption than photodeposition of Cu ions. A decrease in XRD rutile peak intensity with adsorbed metal indicates a change in crystallinity which may enhance photocatalytic activity. Thick and bulging nanostructures in FE-SEM images signify ion adsorption within titanate pores. BET analysis indicated titanate nanotubes with adsorbed metal are mesoporous but their tubular structure persists. XPS showed more active Cu 2p3/2 states under light, supporting an active role of Cu+ in photocatalytic ROS generation. Detection of ROS and Cu species using methanol, EDTA, pCBA, and benzoic acid probes provided strong evidence for degradation via a charge transfer mechanism. Findings demonstrate the potential of the RS-TONR/TNT composite for simultaneous removal of heavy metals and degradation of organic pollutants.


Subject(s)
Metals, Heavy , Trinitrotoluene , Water Pollutants, Chemical , Adsorption , Light
16.
Photochem Photobiol Sci ; 18(5): 1092-1100, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30706934

ABSTRACT

This study presents the first report on the photocatalytic inactivation mechanism for a Salmonella typhimurium pathogen by visible-light active CuxO loaded rhodium-antimony co-doped TiO2 nanorods (CuxO/Rh-Sb-TiO2 NRs) under visible light irradiation (cutoff filter, λ ≥ 420 nm). Remarkably higher pathogenic inactivation of 4 log within 40 min by a CuxO supported Rh-Sb-TiO2 NR photocatalyst was observed. The visible light active photocatalyst mainly produced reduced Cu+ in the lattice of CuxO by charge separation. By this means, photo-generated electrons at the conduction band of Rh-Sb-TiO2 NRs play an important role in reducing Cu2+ to Cu+ through the photocatalytic reduction reaction (PRR), and at the valence band of Rh-Sb-TiO2 NRs, photo-generated holes generate OH˙ radicals through the photocatalytic oxidation reaction (POR). This Cu+ copper species is lethal to microbial pathogens. The inactivation mechanism for the Salmonella typhimurium pathogen was investigated by protein oxidation, HCHO production, and the API-ZYM system. To investigate the role of OH˙ radicals, t-BuOH and MeOH as hole scavengers were used in photocatalytic inactivation reactions. Our experimental results confirmed that the reduced Cu+ species play a major role in bacterial inactivation, while ROS have a major effect on the degradation of organic pollutants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimony/pharmacology , Copper/pharmacology , Rhodium/pharmacology , Salmonella typhimurium/drug effects , Titanium/pharmacology , Anti-Bacterial Agents/chemistry , Antimony/chemistry , Catalysis , Copper/chemistry , Light , Nanotubes/chemistry , Photochemical Processes , Rhodium/chemistry , Salmonella typhimurium/metabolism , Titanium/chemistry
17.
Nanoscale ; 10(47): 22560-22571, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30480694

ABSTRACT

In this study, we present an advanced strategy of low-temperature hydrogen annealing combined with high- temperature quenching in air for activating α-Fe2O3 nanorod photoanodes to boost the photoelectrochemical performance. We report that various low-temperature annealing conditions (340, 360, 380, and 400 °C) under hydrogen gas flow convert ß-FeOOH into magnetite (Fe3O4) as well as introduce Sn4+ diffusion from FTO substrates to its surface. Furthermore, high-temperature quenching (800 °C) resulted in the phase change of magnetite (Fe3O4) into hematite (α-Fe2O3) and self Sn4+ doping into the hematite lattice. Thus, the hydrogen-assisted thermally activated hematite photoanode achieved a photocurrent density of 1.35 mA cm-2 at 1.23 V vs. RHE and 1.91 mA cm-2 at 1.4 V vs. RHE, which is 70% and 80% higher than that of directly quenched hematite at 800 °C. These combined two step strategies provide new insight into high Sn-self doping for α-Fe2O3 photoanodes and allow for further development of more efficient solar water oxidation systems.

18.
Data Brief ; 17: 807-819, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29527543

ABSTRACT

This data article presents the experimental evidences of the effect of TiO2-fluorine doped tin oxide interface annealing and Ni(OH)2 cocatalysts on the photoelectrochemical, structural, morphological and optical properties of Ni(OH)2/CdS/ZnIn2S4/TiO2 heterojunction. The Raman spectroscopy exhibits the sharp features of the rutile phase of TiO2 and in agreement with the X-ray diffraction data. The band gap energy of the 500 °C sample was found to be 3.12 eV, further it was increased to 3.20, 3.22 eV for samples annealed at 600 and 700 °C respectively. The decrease in the band gap energy at 500 °C related to the oxygen vacancies and was analysed by photoluminescence spectroscopy analysis. The synthesis, characterization methods and other experimental details of TiO2 based heterostructure are also provided. The presence of CdS and ZnIn2S4 coating on surface of TiO2 electrodes providing a high surface area, extended visible absorption and helps to improve the change separation. This data article contains data related to the research article entitled "Highly efficient and stable 3D Ni(OH)2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst" (Mahadik et al., 2017) [1].

19.
Dalton Trans ; 47(12): 4076-4086, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29436539

ABSTRACT

In this paper, we focus on the controlled growth mechanism of α-Fe2O3 nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin ß-FeOOH nanorods. The subsequent increase in the hydrothermal time leads ß-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn4+ diffusion from a FTO substrate. Sn4+ diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-Fe2O3 nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm-2. The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-Fe2O3 nanorod arrays and Sn4+ diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-Fe2O3 photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the ß-FeOOH nanorods, as well as Sn4+ diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-Fe2O3 nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.

20.
ACS Appl Mater Interfaces ; 9(28): 23602-23613, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28665115

ABSTRACT

In the present work, we accomplish the boosting of photocatalytic performance by the synergistic effect of acid treatment and transition metal oxide co-catalysts on molten salt rutile TiO2 nanorods. FT-IR and XPS (oxygen deconvolution) results confirmed that the amount of hydroxyl groups increased on the surface of rutile TiO2 nanorods (TO-NRs) after acid treatment. HR-TEM analysis revealed fine dispersion of metal oxide on the surface of acid treated TiO2 nanorods (ATO-NRs). The photocatalytic activities of as-prepared (TO-NRs), acid treated (ATO-NRs), metal oxide loaded (MTO-NRs), and both acid treated and metal oxide loaded (MATO-NRs) nanorods were compared based on the rate kinetics and dye degradation efficiencies. Cobalt oxide (1 wt %) loaded and 1.0 M acid treated TiO2 nanorods (Co/ATO-NR) exhibited the higher photocatalytic degradation efficiency for Orange-II dye degradation and inactivation of S. typhimurium pathogen compared to other photocatalysts under solar irradiation. Photoelectrochemical analysis demonstrated that the charge transfer process in Co/ATO-NR is significantly higher than that in the untreated samples. The improved photocatalytic activity of inactive TO-NRs might be due to enhanced charge transfer of finely dispersed metal oxides on the OH-rich surface of acid treated TiO2 nanorods.

SELECTION OF CITATIONS
SEARCH DETAIL
...