Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 14(5): 1747-1755, 2021 09.
Article in English | MEDLINE | ID: mdl-34085761

ABSTRACT

DHP107 is a newly developed lipid-based oral formulation of paclitaxel. We evaluated the in vivo tissue pharmacokinetics (PKs) of DHP107 in mice and patients using positron emission tomography (PET). Radioisotope-labeled [3 H]DHP107 and [18 F]DHP107 for oral administration were formulated in the same manner as the manufacturing process of DHP107. In vivo tissue PK were assessed in healthy ICR mice and breast cancer xenografted SCID mice. Two patients with metastatic breast cancer were clinically evaluated for absorption at the target lesion after internal absorbed dose estimation. Whole-body PET/computed tomography data were acquired in healthy and xenografted mice and in patients up to 10-24 h after administration. Tissue [18 F]DHP107 signals were plotted against time and PK parameters were determined. The amounts of radioactivity in various organs and excreta were determined using a beta-counter and are expressed as the percentage of injected dose (ID). Oral [18 F]DHP107 was well-absorbed and reached the target lesion in mice and patients with breast cancer. Significant amounts of radioactivity were found in the stomach, intestine, and liver after oral administration of [3 H]- and [18 F]DHP107 in healthy mice. The [18 F]DHP107 reached a peak distribution of 0.7-0.8%ID in the tumor at 5.6-7.3 h in the xenograft model. The [18 F]DHP107 distribution in patients with metastatic breast cancer was the highest at 3-4 h postadministration. Systemic exposures after administration of a DHP107 therapeutic dose were comparable with those in previous studies. PET using radioisotope-labeled drug candidates is useful for drug development and can provide valuable information that can complement plasma PK data, particularly in early phase clinical trials.


Subject(s)
Breast Neoplasms/drug therapy , Paclitaxel/pharmacokinetics , Administration, Oral , Adult , Animals , Breast Neoplasms/pathology , Drug Development/methods , Female , Fluorine Radioisotopes , Humans , Mice , Molecular Imaging/methods , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Positron-Emission Tomography , Radiopharmaceuticals , Xenograft Model Antitumor Assays
2.
PLoS One ; 14(11): e0225095, 2019.
Article in English | MEDLINE | ID: mdl-31743348

ABSTRACT

OBJECTIVE: This study aimed to develop a new oral paclitaxel formulation (DHP23002) and to evaluate its absorption and antitumor effects in a pancreatic tumor mouse model. METHODS: To investigate the oral absorption of DHP23002, a newly developed lipid-based orally active paclitaxel formulation, a pharmacokinetic study of DHP23002, was conducted in mice (62.5 and 125 mg/kg). Moreover, to evaluate the antitumor effect of DHP23002 in pancreatic cancer treatment, the drug was administered to female athymic nude mice at 0 (vehicle), 25, 62.5, and 125 mg/kg on alternate days; the efficacy of the agent was compared with the efficacy of intravenous Taxol® injections at 10 mg/kg once per week. After 3 weeks of administration, tumor growth in mice belonging to each group was further monitored for 4 weeks after discontinuing medication. Moreover, to examine paclitaxel (DHP23002) accumulation in the tumor tissue, the amount of paclitaxel in tumor/blood was quantified using liquid chromatography with quadruple-TOF mass spectrometry. RESULTS: In the mouse pharmacokinetic study, oral Taxol® showed a negligible absorption, whereas DHP23002 showed a high absorption rate dependent on dosage, with a bioavailability of approximately 40% at a dose of 62.5 mg/kg. In efficacy-related studies, DHP23002 administration at a dose of 25, 62.5, or 125 mg/kg on alternate days for 3 weeks showed a superior tumor inhibitory effect of 80%, 92%, and 97% in a xenograft mouse model, respectively, after 7 weeks. Paclitaxel accumulation in tumors persisted for >24 h in mice, when orally administered once at doses of 25, 62.5, and 125 mg/kg DHP23002. CONCLUSION: Oral chemotherapy with DHP23002 showed excellent absorption in animals owing to a strong antitumor activity in a pancreatic cancer mouse model. This demonstrates that paclitaxel is largely distributed and persists for a prolonged period at the tumor site owing to oral DHP23002 administration.


Subject(s)
Drug Compounding , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Administration, Oral , Animals , Cell Line, Tumor , Female , Fluorescence , Humans , Mice, Nude , Paclitaxel/blood , Paclitaxel/pharmacokinetics , Pancreatic Neoplasms/pathology , Tubulin/metabolism
3.
Drug Dev Ind Pharm ; 35(3): 363-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19016100

ABSTRACT

To develop 2-(allylthio)pyrazine (2-AP)-loaded lipid emulsion for parenteral administration, various lipid emulsions were prepared with soybean oil, lecithin, and other carriers using homogenization method, and their physical stabilities were investigated by measuring their droplet sizes. The pharmacokinetics and tissue distribution of 2-AP in lipid emulsion after intravenous administration to rats were evaluated compared with 2-AP in solution. 2-AP was lipophilic, sparingly water-soluble, and unstable in aqueous medium. The 2-AP-loaded lipid emulsion composed of 1% of 2-AP, 4% of soybean oil, 4% of lecithin, and 91% of water was physically and chemically stable for at least 8 weeks. It gave significantly faster clearance of 2-AP and higher affinity to the organs, especially the liver, compared with the 2-AP in solution, suggesting that it could selectively deliver 2-AP to the liver. Thus, the lipid emulsion with soybean oil and lecithin could be used as a potential dosage form with the liver-targeting property and enhanced stability of sparingly water-soluble 2-AP.


Subject(s)
Drug Delivery Systems , Enzyme Inhibitors/administration & dosage , Fat Emulsions, Intravenous/chemistry , Pyrazines/administration & dosage , Animals , Drug Carriers/chemistry , Drug Stability , Enzyme Inhibitors/pharmacokinetics , Lecithins/chemistry , Liver/metabolism , Male , Particle Size , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Solubility , Soybean Oil/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...