Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 11(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34821631

ABSTRACT

Toxic organochloride molecules are widely used in industry for various purposes. With their high volatility, the direct detection of organochlorides in environmental samples is challenging. Here, a new organochloride detection mechanism using 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) is introduced to simplify a sensing method with higher detection sensitivity. Three types of organochloride compounds-trichloroethylene (TCE), dichloromethane (DCM), and dichlorodiphenyltrichloroethane (DDT)-were targeted to understand DCM conjugation chemistry by using nuclear magnetic resonance (NMR) and liquid chromatography with a mass spectrometer (LC-MS). 13C-NMR spectra and LC-MS data indicated that DBN can be labeled on these organochloride compounds by chlorine-nitrogen interaction. Furthermore, to demonstrate the organochloride sensing capability, the labeling yield and limit of detection were determined by a colorimetric assay as well as micellar electrokinetic chromatography (MEKC). The interaction with DBN was most appreciable for TCE, among other organochlorides. TCE was detected at picomolar levels, which is two orders of magnitude lower than the maximum contaminant level set by the United States Environmental Protection Agency. MEKC, in conjunction with this DBN-labeling method, enables us to develop a field-deployable sensing platform for detecting toxic organochlorides with high sensitivity.


Subject(s)
Amidines , Chlorides , Biosensing Techniques , Chlorides/analysis , United States
2.
Sci Rep ; 9(1): 12344, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31462677

ABSTRACT

A new way to simultaneously grow carbon nanotubes (CNTs) and ultrathin graphite on copper (Cu) foils has been investigated. This one-step growth process yields three-dimensional networks of CNTs on graphitic layers (3D CNTs/G) on Cu foils. Their synthesis conditions and growth mechanism are discussed in detail taking their structural properties into account. Individual CNTs and the 3D CNTs/G networks by means of an in-situ conductive atomic force microscope inside a scanning electron microscope are electrically characterized. Time-resolved photoluminescence demonstrated fast charge transfer and high carrier collection efficiency superior to two-dimensional ultrathin graphite only. Their facile and tunable growth and excellent electrical properties show that the 3D CNTs/G are strongly attractive for various applications such as solar cells, sensors, supercapacitors, photovoltaics, power generation, and optoelectronics.

3.
J Nanosci Nanotechnol ; 19(1): 366-374, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30327043

ABSTRACT

Potassium doped titanium oxide (KTiOx) nanowires were prepared by the wet corrosion process (WCP) and their photocatalytic effects were systematically characterized. For the synthesis of KTiOx, the potassium hydroxide concentration of the WCP was varied in order to obtain nanostructures with different surface area and surface charge. Structural and crystalline properties of KTiOx were studied by means of X-ray diffraction, scanning and transmission electron microscopy. Chemical composition was determined by X-ray fluorescence and energy-dispersive X-ray analysis. Photocatalytic performance was investigated as a function of the surface area, pH, and crystalline structures by studying the degradation of methylene blue, cardiogreen, and azorubine red dyes upon UV irradiation. The negatively charged crystalline KTiOx nanostructures with high surface area showed significantly higher photocatalytic degradation compared to their TiOx counterpart. They also showed high efficiency for recovery and re-use. Annealing KTiOx nanostructures improved structural properties leading to well-ordered layered structures and improved photocatalysis. However, annealing at temperatures higher than 600 °C yielded formation of rutile grains at the surface of nanowires, significantly affecting the photocatalytic performance. We believe that KTiOx nanostructures produced by WCP are very promising for photocatalysis, especially due to their high photocatalytic efficiency as well as their potential for re-use and durability.

4.
Opt Express ; 26(10): 12387-12395, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801273

ABSTRACT

The performance of optical devices relying in vanadium dioxide (VO2) technology compatible with the silicon platform depends on the polarization of light and VO2 properties. In this work, optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters is achieved with insertion losses below 1 dB and extinction ratios above 20 dB in a broad bandwidth larger than 30 nm. The optical switching response has been optimized for TE and TM polarizations by using a homogeneous and a granular VO2 layer, respectively, with a small impact on the electrical power consumption. The stability and reversibility between switching states showing the possibility of bistable performance is also demonstrated.

5.
Lab Chip ; 16(18): 3558-64, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27507322

ABSTRACT

An integrated microfluidic chemical analyzer utilizing micellar electrokinetic chromatography (MEKC) is developed using a pneumatically actuated Lifting-Gate microvalve array and a capillary zone electrophoresis (CZE) chip. Each of the necessary liquid handling processes such as metering, mixing, transferring, and washing steps are performed autonomously by the microvalve array. In addition, a method is presented for automated washing of the high resistance CZE channel for device reuse and periodic automated in situ analyses. To demonstrate the functionality of this MEKC platform, amino acids and thiols are labeled and efficiently separated via a fully automated program. Reproducibility of the automated programs for sample labeling and periodic in situ MEKC analysis was tested and found to be equivalent to conventional sample processing techniques for capillary electrophoresis analysis. This platform enables simple, portable, and automated chemical compound analysis which can be used in challenging environments.

6.
Opt Express ; 23(7): A211-8, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968787

ABSTRACT

Localized surface plasmon mediated polymer solar cells (PSCs) were fabricated using the Ag/SiO(2) nanoparticles (NPs). The inverted PSC structure without poly (3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS) was prepared due to the efficient insertion of Ag/SiO(2) NPs in the vicinity of active layer, which led to an enhancement in photo-conversion efficiency (PCE). This enhancement mainly comes from the light scattering by the SiO(2) shell and the localized surface plasmon effect by the Ag core, but we also considered the structural issues such as the NP distribution, the swelling of the active layer and of the metal electrode.

7.
IEEE Trans Nanobioscience ; 14(8): 841-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26761951

ABSTRACT

Recent applications of PDMS nanocomposite materials and nanostructures have dramatically increased in biomedical fields due to optical, mechanical and electrical properties that are controllable by nanoengineering fabrication processes. These applications include biomedical imaging, biosensing, and cellular bioengineering studies using PDMS engineered structures with nanoparticles, nanopillars and functional nanoporous membranes. This article reviews the recent progress of PDMS nanocomposite materials and nanostructures and provides descriptions of various fabrication techniques. Together with these fabrication techniques, we discuss how these nanocomposite PDMS biomedical devices are revolutionizing biomedical science and engineering fields.


Subject(s)
Bioengineering/methods , Nanocomposites , Nanostructures , Nanotechnology/methods , Cell Line, Tumor , Humans , Porosity
8.
Opt Express ; 22(18): 21454-9, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321523

ABSTRACT

We demonstrated the InGaN/GaN-based light-emitting diodes (LEDs) with SiO2 nanoparticles embedded in nanopillar GaN template. With the SiO2 nanoparticles placed between the GaN nanopillars, subsequent overgrowth of GaN layer started only on the exposed tips of the nanopillars and rapidly switched to the lateral growth mode. This resulted in a high quality GaN layer "sitting" on the nanopillars and the layer of pores formed over the SiO2 nanoparticles. For multi-quantum-well LEDs grown on top of such template, ~3 fold increase in optical output was observed compared to reference samples. The effect is attributed mainly to the improved light extraction efficiency due to additional scattering in the nanopillars-SiO2-pores portion of the structure, also to the increased internal quantum efficiency caused by a decreased dislocation density and relaxed strain due to the GaN nanopillars.

9.
ACS Appl Mater Interfaces ; 6(2): 985-9, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24392994

ABSTRACT

Free-standing GaN light-emitting diode (LED) structure with high crystalline quality was fabricated by combining electrochemical and photoelectrochemical etching followed by regrowth of LED structure and subsequent mechanical detachment from a substrate. The structural quality and composition of the regrown LED film thus produced was similar to standard LED, but the photoluminescence and electroluminescence intensity of the LED structures on the etched template were several times higher than for standard LED. The performance enhancement was attributable to additional light scattering and improved crystalline quality as a result of the combined etching scheme.

10.
J Nanosci Nanotechnol ; 13(5): 3645-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23858920

ABSTRACT

In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.


Subject(s)
Lighting/instrumentation , Luminescent Measurements/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Semiconductors , Desiccation/methods , Equipment Design , Equipment Failure Analysis , Particle Size , Ultraviolet Rays
11.
Opt Express ; 21(1): 1128-36, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389006

ABSTRACT

We study electroabsorption (EA) behavior of InGaN/GaN quantum structures grown using epitaxial lateral overgrowth (ELOG) in correlation with their dislocation density levels and in comparison to steady state and time-resolved photoluminescence measurements. The results reveal that ELOG structures with decreasing mask stripe widths exhibit stronger EA performance, with a maximum EA enhancement factor of 4.8 compared to the reference without ELOG. The analyses show that the EA performance follows similar trends with decreasing dislocation density as the essential parameters of the photoluminescence spectra (peak position, width and intensity) together with the photoluminescence lifetimes. While keeping the growth window widths constant, compared to photoluminescence behavior, however, EA surprisingly exhibits the largest performance variation, making EA the most sensitive to the mask stripe widths.

12.
Opt Express ; 20(6): 6036-41, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418481

ABSTRACT

2.7 times increase in room temperature photoluminescence (PL) intensity and 3.2 times increase in electroluminescence (EL) intensity were observed in blue multi-quantum-well (MQW) GaN/InGaN light emitting diodes (LEDs) as a result of introduction of nano-needle structure embedded with Ag nanoparticles (NPs) into n-GaN film underlying the active MQW region and thick p-GaN contact layer of LEDs. The nano-needle structure was produced by photoelectrochemical etching. Simultaneously a measurable decrease in room temperature decay time from 2.2 ns in control samples to 1.6 ns in PL was observed. The results are explained by strong coupling of recombination in GaN/InGaN MQWs with Ag NPs related localized surface plasmons.


Subject(s)
Gallium/chemistry , Gold/chemistry , Indium/chemistry , Lighting/instrumentation , Nanotubes/chemistry , Semiconductors , Energy Transfer , Equipment Design , Equipment Failure Analysis
13.
Opt Express ; 20(3): 2116-23, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330452

ABSTRACT

Optical properties of InGaN/GaN multi-quantum-well (MQW) structures with a nanolayer of Ag/SiO2 nanoparticle (NP) on top were studied. Modeling and optical absorption (OA) measurements prove that the NPs form localized surface plasmons (LSP) structure with a broad OA band peaked near 440-460 nm and the fringe electric field extending down to about 10 nm into the GaN layer. The presence of this NP LSP electrical field increases the photoluminescence (PL) intensity of the MQW structure by about 70% and markedly decreases the time-resolved PL (TRPL) relaxation time due to the strong coupling of MQW emission to the LSP mode.


Subject(s)
Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Theoretical , Surface Plasmon Resonance/instrumentation , Computer Simulation , Computer-Aided Design , Energy Transfer , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...