Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 123(10): 1127-1142, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30359200

ABSTRACT

RATIONALE: Monocyte infiltration into the subintimal space and its intracellular lipid accumulation are the most prominent features of atherosclerosis. To understand the pathophysiology of atherosclerotic disease, we need to understand the characteristics of lipid-laden foamy macrophages in the subintimal space during atherosclerosis. OBJECTIVE: We sought to examine the transcriptomic profiles of foamy and nonfoamy macrophages isolated from atherosclerotic intima. METHODS AND RESULTS: Single-cell RNA sequencing analysis of CD45+ leukocytes from murine atherosclerotic aorta revealed that there are macrophage subpopulations with distinct differentially expressed genes involved in various functional pathways. To specifically characterize the intimal foamy macrophages of plaque, we developed a lipid staining-based flow cytometric method for analyzing the lipid-laden foam cells of atherosclerotic aortas. We used the fluorescent lipid probe BODIPY493/503 and assessed side-scattered light as an indication of cellular granularity. BODIPYhiSSChi foamy macrophages were found residing in intima and expressing CD11c. Foamy macrophage accumulation determined by flow cytometry was positively correlated with the severity of atherosclerosis. Bulk RNA sequencing analysis showed that compared with nonfoamy macrophages, foamy macrophages expressed few inflammatory genes but many lipid-processing genes. Intimal nonfoamy macrophages formed the major population expressing IL (interleukin)-1ß and many other inflammatory transcripts in atherosclerotic aorta. CONCLUSIONS: RNA sequencing analysis of intimal macrophages from atherosclerotic aorta revealed that lipid-loaded plaque macrophages are not likely the plaque macrophages that drive lesional inflammation.


Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Transcriptome , Animals , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology
2.
PLoS One ; 11(6): e0156979, 2016.
Article in English | MEDLINE | ID: mdl-27281182

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) is the most common allergic disease but little is known about the difference of local immune responses in children and adults with AR. OBJECTIVE: To compare local immune responses between children and adults with AR and nonallergic rhinitis (NAR), and to investigate whether the association of local and systemic immune responses is different between the two age groups. METHODS: Fifty-one patients with chronic rhinitis were enrolled and grouped into children (N = 27, mean age 7.2 years) and adults (N = 24, mean age 29.9 years). Diagnosis of AR was based on symptoms, skin prick tests and serum specific IgEs. Nasal lavage (NAL) fluids were collected from all subjects and used to measure the levels of total IgE, specific IgEs to house dust mites (Dp and Df), and cytokines (TNF-α, IL-4, IL-10, IL-17A and IFN-γ). Flow cytometry was used to measure inflammatory cell types in NAL fluids. RESULTS: AR had significantly increased local levels of total IgE and specific IgEs to Dp and Df compared with NAR in both age groups (P < 0.05). Nasal eosinophils % (P = 0.01) was significantly increased only in children with AR. Local-systemic correlations of total IgE (r = 0.662, P = 0.000) and eosinophil % (r = 0.461, P = 0.015) between the peripheral blood and NAL fluids were found only in children. Moreover, children had correlations between total IgE and eosinophil % in the peripheral blood (r = 0.629, P = 0.001) and in NAL fluids (r = 0.373, P = 0.061). CONCLUSION: Elevated local IgE is a common feature of AR in children and adults. Local measures in NAR showed naïve state of immune response which disagree with the hypothesis of local allergic rhinitis. Children showed intense local inflammation and close local-systemic interactions compared to adults supporting pediatric AR as a distinct feature.


Subject(s)
Nasal Lavage Fluid/immunology , Rhinitis/classification , Rhinitis/immunology , Adolescent , Adult , Child , Child, Preschool , Cytokines/metabolism , Female , Humans , Immunoglobulin E/metabolism , Male , Middle Aged , Nasal Lavage Fluid/chemistry , Rhinitis/metabolism , Skin Tests , Young Adult
3.
PLoS One ; 8(6): e66970, 2013.
Article in English | MEDLINE | ID: mdl-23825600

ABSTRACT

Recently, it has been demonstrated that high cholesterol diet induced hypercholesterolemia and vascular lipid oxidation and accumulation in zebrafish larvae, suggesting that zebrafish is a new promising atherosclerosis model in addition to mouse models. However, up to date, there was no report regarding inflammatory cytokine expression during the lipid accumulation in zebrafish larva and adult fish. In this study, we first demonstrated the expression levels of IL-1ß and TNF-α in high cholesterol diet (HCD)-fed zebrafish larvae, and found that although HCD induced vascular lipid accumulation, the cytokine expressions in the larvae were not changed by HCD. Furthermore, there was no significant difference in leukocyte accumulation in vessels between control and HCD fed group. But prolonged HCD induced IL-1ß expression in spleen and liver compared to those of control zebrafish, and produced very early stage of fatty streak lesion in dorsal aorta of 19 week HCD-fed zebrafish. These results indicate that HCD induced hypercholesterolemia and atherosclerotic changes in zebrafish are very early stage, and suggest the necessity of the generation of mutant zebrafish having a disruption in a lipid metabolism-related gene leading to severe hypercholesterolemia and advanced atherosclerosis.


Subject(s)
Cholesterol/adverse effects , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Interleukin-1beta/genetics , Larva/genetics , Zebrafish Proteins/genetics , Zebrafish , Animals , Blood Vessels/drug effects , Blood Vessels/immunology , Blood Vessels/metabolism , Cholesterol/metabolism , Female , Hypercholesterolemia/etiology , Hypercholesterolemia/genetics , Hypercholesterolemia/immunology , Hypercholesterolemia/metabolism , Immunity, Innate/drug effects , Larva/drug effects , Larva/immunology , Larva/metabolism , Leukocytes/drug effects , Leukocytes/immunology , Male , Mice , Time Factors , Tumor Necrosis Factor-alpha/genetics
4.
Mol Cancer ; 12: 71, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23835085

ABSTRACT

BACKGROUND: With high throughput screening, novel therapeutic agents can be efficiently identified. Unfortunately, researchers only resort to in vitro cell viability assays for screening of anticancer drugs for retinoblastoma, the most common intraocular cancer in the childhood. Current available animal models of retinoblastoma require more than 2 weeks for tumour formation and the investigation of the efficacy of therapeutic agents. In this study, we established a novel orthotopic transplantation model of retinoblastoma in zebrafish as an in vivo animal model for screening of anticancer drugs. METHODS: We injected retinoblastoma cells into the vitreous cavity of zebrafish at 48 hours after fertilization. Eyeballs of zebrafish were scanned daily under the confocal laser microscope, and the tumor population was quantitatively analyzed by measuring the mean intensity of green fluorescent protein (GFP). Transplanted retinoblastoma cells were isolated to perform further analyses including Western blotting and reverse transcriptase-polymerase chain reaction to confirm that retinoblastoma cells maintained their characteristics as tumor cells even after transplantation and further isolation. To figure out the potential of this model for screening of anticancer drugs, zebrafish were cultured in Ringer's solution containing carboplatin and melphalan after the injection of retinoblastoma cells. RESULTS: The degree of the tumor population was dependent on the number of retinoblastoma cells injected and maintained stably for at least 4 days. Transplanted retinoblastoma cells maintain their proliferative potential and characteristics as retinoblastoma cells after isolation. Interestingly, systemic application of carboplatin and melphalan demonstrated significant reduction in the tumor population, which could be quantitatively analyzed by the estimation of the mean intensity of GFP. CONCLUSIONS: This orthotopic retinoblastoma model in zebrafish is expected to be utilized for the screening of anticancer drugs for the treatment of retinoblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays , Humans , Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...