Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 51(2): 245-254, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30255260

ABSTRACT

This study was conducted to evaluate the anti-obesity effects of long-term taurine supplementation in a mild obese ICR mouse model and to study the mechanism by which taurine induces weight loss. Three groups of male ICR mice were fed a normal chow diet, a high-fat diet (HFD), or an HFD supplemented with 2% taurine in drinking water for 28 weeks. Body weight was measured every week. Metabolic, behavioral, and physiological monitoring were carried out using PhenoMaster at 28 weeks. Interscapular brown fat (BAT), inguinal white fat tissue (WAT), and quadriceps muscle were analyzed and compared to assess the change of gene expression related to adipogenesis. Taurine supplementation showed the trend of anti-obesity effect in ICR mice fed an HFD for 28 weeks. HFD-fed mice did not show significant difference of oxygen consumption (VO2), energy expenditure (EE), respiratory exchange rate (RER), and locomotive activity compared with those of normal chow diet fed mice. The expression of adipogenesis-related genes such as PPAR-α, PPAR-γ, C/EBP-α, C/EBP-ß, and AP2 increased in BAT and WAT, but not in muscle tissue. Taurine supplementation showed the downregulation of these genes in WAT but not in BAT or muscle. Consistently, the expression of taurine transporter (TauT) and adipocyte-specific genes such as adiponectin, leptin, and IL-6 was regulated in a similar pattern by taurine supplementation. Long-term taurine supplementation causes weight loss, most likely by inhibiting adipogenesis in WAT. TauT expression may be involved in the expression of various genes regulated by taurine supplementation.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Anti-Obesity Agents/therapeutic use , Dietary Supplements , Obesity/diet therapy , Taurine/therapeutic use , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Energy Metabolism/drug effects , Gene Expression Regulation , Male , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mice , Mice, Inbred ICR , Mice, Obese , Obesity/metabolism , Taurine/pharmacology , Transcription Factors/genetics , Weight Loss/drug effects
2.
Lab Anim Res ; 28(3): 181-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23091518

ABSTRACT

Liriope platyphylla is a medical herb that has long been used in Korea and China to treat cough, sputum, neurodegenerative disorders, obesity, and diabetes. The aims of this study were to determine the antidiabetic and antiobesity effects of aqueous extract of L. platyphylla (AEtLP) through glucose and lipid regulation in both pre-diabetes and obesity stage of type II diabetes model. Two concentrations of AEtLP were orally administrated to OLETF (Otsuka Long-Evans Tokushima Fatty) rats once a day for 2 weeks, after which changes in glucose metabolism and fat accumulation were measured. Abdominal fat mass dramatically decreased in AEtLP-treated OLETF rats, whereas glucose concentration slightly decreased in all AEtLP-treated rats. However, compared to vehicle-treated OLETF rats, only AEtLP10 (10% concentration)-treated OLETF rats displayed significant induction of insulin production, whereas AEtLP5 (5% concentration)-treated OLETF rats showed a lower level of insulin. Although serum adiponectin level increased in only AEtLP5-treated rats, significant alteration of lipid concentration was detected in AEtLP5-treated OLETF rats. Expression of Glut-1 decreased in all AEtLP-treated rats, whereas Akt phosphorylation increased only in AEtLP10-treated OLETF rats. Furthermore, the pattern of Glut-3 expression was very similar with that of Glut-1 expression, which roughly corresponded with the phosphorylation of c-Jun N-teminal kinase (JNK) and p38 in the mitogen-activated protein kinase pathway. Therefore, these findings suggest that AEtLP should be considered as a therapeutic candidate during pre-diabetes and obesity stage capable of inducing insulin secretion from pancreatic ß-cells, glucose uptake in liver cells, as well as a decrease in fat and lipid accumulation.

3.
Int J Mol Med ; 30(2): 392-400, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22641502

ABSTRACT

Oxidative stress and oxidative photodamage induced by UV radiation can cause serious skin damage that is characterized by wrinkling, roughness, laxity and pigmentation. The effects of a sea buckthorn (Hippophae rhamnoides L.) fruit blend (SFB) containing sea buckthorn fruit extract, blueberry extract and collagen on UV-induced skin aging were examined by treating hairless mice for 6 weeks with UV irradiation and SFB administered orally. The effects of SFB were measured in the skin of these mice by phenotypical and histological analysis and western blotting. According to wrinkle formation analysis, the oral intake of SFB induced a decrease in wrinkle formation in the damaged skin of UV-irradiated mice. The thickness of the epidermis and dermis in the vitamin extracts (Vit)- and SFB-treated group was lower than that in the vehicle-treated group, but the group treated with SFB50 was the most effective group. The mice treated with the Vit- or SFB solution maintained a normal moisture content through the inhibition of transdermal water loss (TEWL) and an increase in skin moisture content. Furthermore, the levels of matrix metalloproteinase (MMP) and collagen protein expression were assessed in five groups to examine the mechanisms underlying the effects of SFB oral intake. The application of SFB induced a decrease in MMP-1 and -9 expression to the levels observed in the vehicle-treated group, but MMP-9 expression showed a much larger decrease than MMP-1. Furthermore, the expression of collagen-1 in the skin corresponded to MMP expression except for the SFB30-treated group, whereas the superoxide dismutase (SOD) activity was increased dramatically in the SFB50-treated group. These results suggest that SFB has potential as a protective and therapeutic drug candidate against skin aging that functions by regulating the moisture content, MMP expression levels and SOD activity.


Subject(s)
Hippophae/chemistry , Matrix Metalloproteinase Inhibitors , Skin Aging/drug effects , Skin Aging/radiation effects , Superoxide Dismutase/metabolism , Ultraviolet Rays/adverse effects , Administration, Oral , Animals , Blood Chemical Analysis , Body Weight/drug effects , Collagen Type I/genetics , Collagen Type I/metabolism , Complex Mixtures/administration & dosage , Complex Mixtures/pharmacology , Dermis/drug effects , Dermis/metabolism , Enzyme Activation/drug effects , Epidermis/drug effects , Epidermis/metabolism , Fruit/chemistry , Gene Expression/drug effects , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Mice, Hairless , Skin Aging/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...