Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 82(8): 086111, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21895289

ABSTRACT

We present a high speed optical profiler (HSOP) using frequency-scanning lasers for three-dimensional profile measurements of microscopic structures. To improve upon previous techniques for implementing the HSOP, we developed frequency-scanning lasers and a compact microscopic interferometer. The controller of the HSOP was also modified to generate proper phase-shifting steps. For measurements of step height specimens, the HSOP showed results comparable with a commercial optical profiler, even with much higher measurement speeds (up to 30 Hz). The typical repeatability of step height measurement was less than 1 nm. We also present measurements of microscopic structures to verify the HSOP's ability to perform high speed inline inspection for the semiconductor and flat-panel display industries.

2.
Appl Opt ; 50(11): 1541-7, 2011 Apr 10.
Article in English | MEDLINE | ID: mdl-21478926

ABSTRACT

High-speed two-wavelength phase-shifting interferometry is presented. The technique is aimed at high-speed in-line inspection of spacers in liquid crystal display panels or wafer bumps where the measuring range is well determined and high-speed measurements are essential. With our test setup, the measuring range is extended to 10 µm by using two injection locked frequency scanning lasers that offer fast and equidistant phase shifting of interference fringes. A technique to determine the unwrapped phase map in a frequency scanning phase-shifting interferometry without the ordinary phase-unwrapping process is proposed.

3.
Opt Express ; 17(3): 1442-6, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19188972

ABSTRACT

We present a high speed phase shifting interferometer which utilizes the self injection locking of a frequency tunable laser diode. By using a confocal Fabry-Perot cavity made of ultra low expansion glass, and linearly modulating the laser diode current, the laser frequency could be injection locked to the resonant modes of the Fabry-Perot cavity consecutively. It provided equal phase steps to the interferograms which are ideal to be analyzed by the Carré algorithm. The phase step error was evaluated to be about 3 MHz which corresponds to 0.2 nm in length measurement. With this technique, profile measurements are insensitive to external vibration since four 640x480 pixels images can be acquired within 4 ms. Difference of two profile measurements, each made with and without vibration isolation, respectively, was evaluated to be 0.5 nm (rms).

SELECTION OF CITATIONS
SEARCH DETAIL
...