Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26720, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455579

ABSTRACT

There are two cultivated and weedy types of Perilla crop (TCWTPC), and they are widely distributed and cultivated in East Asia, especially in South Korea and Japan. The objective of this study is to create simple sequence repeat (SSR) markers linked to morphological traits that show differences between accessions of the TCWTPC using recently designed SSR primer sets in Perilla crop. Genetic diversity within 52 accessions of the TCWTPC, gathered from South Korea, was assessed using 28 novel Perilla SSR primer sets. Based on the assessment, a collection of 28 Perilla SSR primer sets were shown to exhibit polymorphism and yielded a total of 142 alleles across the 52 accessions of the TCWTPC. Through inspection of a phylogenetic tree and population structure, the 52 accessions of the TCWTPC were classified into three major groups. Although most accessions of the TCWTPC were relatively clearly distinguished, SSR markers failed to distinguish several accessions belonging to the two weedy types of the Perilla crop. By using an association mapping analysis (AMA) of the 28 Perilla SSR markers and seven morphological characteristics in the 52 TCWTPC accessions, we detected that three of the Perilla SSR markers (KNUPF134, KNUPF137, KNUPF149) were associated with plant and seed characteristics. The novel SSR primer sets developed in Perilla crop should be useful in AMA for assessing genetic diversity and relationships between and within TCWTPC accessions, and this information will be helpful for genetic mapping in breeding programs for Perilla crop.

2.
Plants (Basel) ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140419

ABSTRACT

Globally, maize is one of the most consumed crops along with rice and wheat. However, maize is sensitive to different abiotic stress factors, such as drought, which have a significant impact on its production. The aims of this study were to investigate (1) genetic variation among 41 maize-inbred lines and the relationships among them and (2) significant marker-trait associations (SMTAs) between 7 selected physiochemical traits and 200 simple sequence repeat (SSR) markers to examine the genetics of these traits. A total of 1023 alleles were identified among the 41 maize-inbred lines using the 200 SSR loci, with a mean of 5.1 alleles per locus. The average major allele frequency, gene diversity, and polymorphism information content were 0.498, 0.627, and 0.579, respectively. The population structure analysis based on the 200 SSR loci divided the maize germplasm into two primary groups with an admixed group. Moreover, this study identified, respectively, 85 SMTAs and 31 SMTAs using a general linear model (Q GLM) and a mixed linear model (Q + K MLM) with statistically significant (p < 0.05 and <0.01) associations with the seven physiochemical traits (caffeic acid content, chlorogenic acid content, gallic acid content, ferulic acid content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, leaf relative moisture content, total phenolic content). These SSR markers were highly correlated with one or more of the seven physiochemical traits. This study provides insights into the genetics of the 41 maize-inbred lines and their seven physiochemical traits and will be of assistance to breeders in the marker-assisted selection of maize for breeding programs.

3.
Genes Genomics ; 45(12): 1587-1598, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831405

ABSTRACT

BACKGROUND: Maize has great importance in South Sudan as the most cultivated cereal after sorghum; however, numerous challenges are encountered in its production. To raise maize production, it is critical to exploit the wealth of its genetic variation for grain yield enhancement. OBJECTIVE: This study aimed to conduct association analysis to identify specific simple sequence repeat (SSR) markers associated with quantitative agronomic traits. METHODS: Genetic variation and population structure were investigated among 31 maize accessions by association analysis using 50 SSR markers and seven quantitative agronomic traits. RESULTS: The genotypes exhibited abundant genetic variation, and 418 alleles were detected with an average of 8.4 alleles per locus. The average genetic diversity, major allele frequency, and polymorphic information content were 0.754, 0.373, and 0.725, respectively. The population structure based on 50 SSR markers divided the maize accessions into two main groups and an admixed group without considering their descent. Association analysis was performed using a general linear model (Q GLM) and a mixed linear model (Q + K MLM). Q GLM detected 44 trait-marker associations involving 23 SSR markers. Q + K MLM detected four marker-trait associations involving three SSR markers (umc2286, umc1303, umc1429) associated with days to tasseling, days to silking, leaf length, and leaf width. CONCLUSIONS: The detected significant SSR markers related to agronomic traits could be useful for future genetic studies. Additionally, markers affecting several agronomic traits and overlapped SSR markers require further testing on a wide range of genotypes prior to their consideration as candidate markers for marker assisted selection for South Sudan maize improvement.


Subject(s)
Microsatellite Repeats , Zea mays , Zea mays/genetics , South Sudan , Phenotype , Gene Frequency , Microsatellite Repeats/genetics , Edible Grain/genetics
4.
Plants (Basel) ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678952

ABSTRACT

The ratio of amylose to amylopectin in maize kernel starch is important for the appearance, structure, and quality of food products and processing. This study aimed to identify quantitative trait loci (QTLs) controlling amylose content in maize through association mapping with simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. The average value of amylose content for an 80-recombinant-inbred-line (RIL) population was 8.8 ± 0.7%, ranging from 2.1 to 15.9%. We used two different analyses-Q + K and PCA + K mixed linear models (MLMs)-and found 38 (35 SNP and 3 SSR) and 32 (29 SNP and 3 SSR) marker-trait associations (MTAs) associated with amylose content. A total of 34 (31 SNP and 3 SSR) and 28 (25 SNP and 3 SSR) MTAs were confirmed in the Q + K and PCA + K MLMs, respectively. This study detected some candidate genes for amylose content, such as GRMZM2G118690-encoding BBR/BPC transcription factor, which is used for the control of seed development and is associated with the amylose content of rice. GRMZM5G830776-encoding SNARE-interacting protein (KEULE) and the uncharacterized marker PUT-163a-18172151-1376 were significant with higher R2 value in two difference methods. GRMZM2G092296 were also significantly associated with amylose content in this study. This study focused on amylose content using a RIL population derived from dent and waxy inbred lines using molecular markers. Future studies would be of benefit for investigating the physical linkage between starch synthesis genes using SNP and SSR markers, which would help to build a more detailed genetic map and provide new insights into gene regulation of agriculturally important traits.

5.
Plants (Basel) ; 11(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365424

ABSTRACT

The Perilla crop is highly regarded in South Korea, both as a health food and traditional food. However, there is still a lack of Perilla SSR primer sets (PSPSs) for studying genetic variation among accessions of cultivated and weedy types of Perilla crop (CWTPC) from South Korea. In this study, 30 PSPSs were newly developed based on transcriptome contigs in P. frutescens, and 17 of these PSPSs were used to study the genetic diversity, phylogenetic relationships and structure population among 90 accessions of the CWTPC collected from South Korea. A total of 100 alleles were detected from selected 17 PSPSs, with an average of 5.9 alleles per locus. The gene diversity (GD) ranged from 0.164 to 0.831, with an average of 0.549. The average GD values from the cultivated var. frutescens, weedy var. frutescens, and weedy var. crispa, were 0.331, 0.588, and 0.389 respectively. In addition, most variance shown by Perilla SSR markers was within a population (73%). An analysis of the population structure and phylogenetic relationships showed that the genetic relationship among accessions of the weedy var. frutescens and weedy var. crispa is closer than that for the accessions of the cultivated var. frutescens. Based on association analysis between 17 PSPSs and three seed traits in 90 Perilla accessions, we detected 11 PSPSs that together were associated with the seed size and seed hardness traits. Therefore, the newly developed PSPSs will be useful for analyzing genetic variation among accessions of the CWTPC, association mapping, and selection of important morphological traits in Perilla crop breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...