Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631700

ABSTRACT

This paper proposes an algorithm for transmitting and reconstructing the estimated point cloud by temporally estimating a dynamic point cloud sequence. When a non-rigid 3D point cloud sequence (PCS) is input, the sequence is divided into groups of point cloud frames (PCFs), and a key PCF is selected. The 3D skeleton is predicted through 3D pose estimation, and the motion of the skeleton is estimated by analyzing the joints and bones of the 3D skeleton. For the deformation of the non-rigid human PC, the 3D PC model is transformed into a mesh model, and the key PCF is rigged using the 3D skeleton. After deforming the key PCF into the target PCF utilizing the motion vector of the estimated skeleton, the residual PC between the motion compensation PCF and the target PCF is generated. If there is a key PCF, the motion vector of the target PCF, and a residual PC, the target PCF can be reconstructed. Just as compression is performed using pixel correlation between frames in a 2D video, this paper compresses 3D PCFs by estimating the non-rigid 3D motion of a 3D object in a 3D PC. The proposed algorithm can be regarded as an extension of the 2D motion estimation of a rigid local region in a 2D plane to the 3D motion estimation of a non-rigid object (human) in 3D space. Experimental results show that the proposed method can successfully compress 3D PC sequences. If it is used together with a PC compression technique such as MPEG PCC (point cloud compression) in the future, a system with high compression efficiency may be configured.

2.
Environ Pollut ; 329: 121715, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37120000

ABSTRACT

Fine particulate matter (PM2.5) is associated with public health problems worldwide. Especially, PM2.5 induces epigenetic and microenvironmental changes in lung cancer. Angiogenesis is important for the development and growth of cancer and is mediated by angiogenic factors, including vascular endothelial growth factor. However, the effects of mild PM2.5 exposure on angiogenesis in lung cancer remain unclear. In this study, we examined angiogenic effects using relatively lower concentrations of PM2.5 than in other studies and found that PM2.5 increased angiogenic activities in both endothelial cells and non-small cell lung carcinoma cells. PM2.5 also promoted the growth and angiogenesis of lung cancer via the induction of hypoxia-inducible factor-1α (HIF-1α) in a xenograft mouse tumor model. Angiogenic factors, including vascular endothelial growth factor (VEGF), were highly expressed in lung cancer patients in countries with high PM2.5 levels in the atmosphere, and high expression of VEGF in lung cancer patients lowered the survival rate. Collectively, these results provide new insight into the mechanisms by which mild exposure to PM2.5 is involved in HIF-1α-mediated angiogenesis in lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Vascular Endothelial Growth Factor A/metabolism , Particulate Matter/toxicity , Endothelial Cells/metabolism , Cell Line, Tumor
3.
Front Immunol ; 13: 850287, 2022.
Article in English | MEDLINE | ID: mdl-35401555

ABSTRACT

The ocular surface is continuously exposed to various environmental factors, and innate and adaptive immunity play crucial roles in ocular surface diseases (OSDs). Previously, we have reported that the topical application of RCI001 affords excellent anti-inflammatory and antioxidant effects in dry eye disease and ocular chemical burn models. In this study, we examined the inhibitory effects of RCI001 on the Rac1 and NLRP3 inflammasomes in vitro and in vivo. Following RCI001 application to RAW264.7 and Swiss 3T3 cells, we measured Rac1 activity using a glutathione-S-transferase (GST) pull-down assay and G-protein activation assay kit. In addition, we quantified the expression of inflammatory cytokines (interleukin [IL]-1ß, IL-6, and tumor necrosis factor [TNF]-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells using ELISA and real-time PCR. In the mouse ocular alkali burn model, RCI001 was administered via eye drops (10 mg/mL, twice daily) for 5 days, and 1% prednisolone acetate (PDE) ophthalmic suspension was used as a positive control. Corneal epithelial integrity (on days 0-5) and histological examinations were performed, and transcript and protein levels of Rac1, NLRP3, caspase-1, and IL-1ß were quantified using real-time PCR and western blotting in corneal tissues collected on days 3 and 5. We observed that RCI001 dose-dependently inhibited Rac1 activity and various inflammatory cytokines in LPS-stimulated murine macrophages. Furthermore, RCI001 restored corneal epithelial integrity more rapidly than corticosteroid treatment in chemically injured corneas. Compared to the saline group, activation of Rac1 and the NLRP3 inflammasome/IL-1ß axis was suppressed in the RCI001 group, especially during the early phase of the ocular alkali burn model. Topical RCI001 suppressed the expression of activated Rac1 and inflammatory cytokines in vitro and rapidly restored the injured cornea by inhibiting activation of Rac1 and the NLRP inflammasome/IL-1ß axis in vivo. Accordingly, RCI001 could be a promising therapeutic agent for treating OSDs.


Subject(s)
Anti-Inflammatory Agents , Burns, Chemical , Inflammasomes , 3T3 Cells , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Burns, Chemical/drug therapy , Cytokines/metabolism , Eye Burns/drug therapy , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells
4.
Biomolecules ; 11(2)2021 01 28.
Article in English | MEDLINE | ID: mdl-33525716

ABSTRACT

Microalgae have been attracting attention as feedstock for biorefinery because they have various advantages, such as carbon fixation, high growth rate and high energy yield. The bioactive compounds and lutein contained in microalgae are known to be beneficial for human health, especially eye and brain health. In this study, in order to improve the recovery of bioactive extracts including lutein from Tetraselmis suecica with higher efficiency, an effective solvent was selected, and the extraction parameters such as temperature, time and solid loading were optimized by response surface methodology. The most effective solvent for lutein recovery was identified as 100% methanol, and the optimum condition was determined (42.4 °C, 4.0 h and 125 g/L biomass loading) by calculation of the multiple regression model. The maximum content of recovered lutein was found to be 2.79 mg/mL, and the ABTS radical scavenging activity (IC50) and ferric reducing antioxidant power (FRAP) value were about 3.36 mg/mL and 561.9 µmol/L, respectively. Finally, the maximum lutein recovery from T. suecica through statistical optimization was estimated to be 22.3 mg/g biomass, which was 3.1-fold improved compared to the control group.


Subject(s)
Chlorophyta/metabolism , Lutein/metabolism , Antioxidants/chemistry , Benzothiazoles , Biomass , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Fluorescence Recovery After Photobleaching , Free Radical Scavengers/chemistry , Inhibitory Concentration 50 , Lutein/chemistry , Methanol/chemistry , Microalgae , Solvents/chemistry , Sulfonic Acids , Temperature
5.
Foods ; 9(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126736

ABSTRACT

Carbon-neutral and eco-friendly biomass-based processes are recognized as a frontier technology for sustainable development. In particular, biopolymers are expected to replace petrochemical-based films that are widely used in food packaging. In this study, the fabrication conditions of functional (antioxidant and antibacterial) bioelastomers were investigated using by-products from the juice processing (experimental group) and freeze-dried whole fruit (control group). Bioelastomer was fabricated by a casting method in which polydimethylsiloxane (PDMS) was mixed with 25 or 50 wt% aronia powder (juice processing by-products and freeze-dried whole fruit). The mechanical properties of the bioelastomers were measured based on tensile strength and Young's modulus. When the mixture contained 50 wt% aronia powder, the strength was not appropriate for the intended purpose. Next, the surface and chemical properties of the bioelastomer were analyzed; the addition of aronia powder did not significantly change these properties when compared to PDMS film (no aronia powder). However, the addition of aronia powder had a significant effect on antioxidant and antimicrobial activities and showed higher activity with 50 wt% than with 25 wt%. In particular, bioelastomers fabricated from aronia juice processing by-products exhibited approximately 1.4-fold lower and 1.5-fold higher antioxidant and antimicrobial activities, respectively, than the control group (bioelastomers fabricated from freeze-dried aronia powder).

6.
Bioelectromagnetics ; 40(8): 588-601, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31663626

ABSTRACT

Owing to the development of information technology and the electronics industry, and the increase in the use of electronic products, an increasing number of people are exposed to electromagnetic fields (EMFs) in daily life. There has been concern about the effects of EMFs on the human body. Th9 cells, which are characterized by the generation of interleukin-(IL-9), are a recently defined subset of T helper (Th) cells. In this study, we investigated the effect of extremely low-frequency (60 Hz) EMFs, such as those generated by household power sources, at 0.8 mT intensity on CD4+ T cells. The exposure of CD4+ T cells to such EMFs under Th9-polarizing conditions increased IL-9 secretion and gene expression of transcription factors that are important for Th9 development. The expression of GATA3 increased in the early stage, and the phosphorylation of STAT5 and STAT6, which regulate the expression of GATA3, increased. In addition, EMFs increased the expression of IL-2 by the T cells. In conclusion, the differentiation of CD4+ T cells to the Th9 phenotype was increased by exposure to extremely low-frequency EMFs, and this appeared to be dependent on the IL-2 signaling pathway. Furthermore, co-cultures of EMF-exposed Th9 cells and mast cells showed an increased expression of mast cell proteases, FcεR1α, and mast cell-derived inflammatory cytokines compared with co-cultures of non-EMF-exposed Th9 cells and mast cells. Our results suggest that EMFs enhance the differentiation of CD4+ T cells to the Th9 phenotype, resulting in mast cell activation and inflammation. Bioelectromagnetics. 2019;40:588-601. © 2019 Bioelectromagnetics Society.


Subject(s)
Cell Differentiation , Electromagnetic Fields , Interleukin-2/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Line , Humans , Male , Mice, Inbred C57BL , Signal Transduction
7.
J Immunol Res ; 2017: 7052560, 2017.
Article in English | MEDLINE | ID: mdl-28761880

ABSTRACT

The roots of Euphorbia kansui, which belong to the family Euphorbiaceae, have been used as a traditional medicine for the treatment of various diseases such as diabetes, ascites, and leukemia. Recently, it was reported that the methylene chloride fraction of E. kansui radix (EKC) regulated the differentiation of Th17 cells and alleviated the symptoms of Th17-related inflammatory bowel disease. Imiquimod (IMQ), a TLR7/8 agonist, has been used to induce psoriasis in a mouse model. In this study, we evaluated the effect of EKC in an IMQ-induced psoriasis model. EKC effectively inhibited the production of interleukin-17A and interferon-γ in vitro. On this basis, EKC was administered to an animal model of psoriasis. Acanthosis and the infiltration of inflammatory cells into the dermis were significantly reduced by EKC. EKC also inhibited the expression of IL-17A, IL-22, IL-23, IL-12, and RAR-related orphan receptor gamma t (RORγt) in the spleen, skin-draining lymph nodes, and the skin. Additionally, EKC inhibited the activity of dendritic cells but not that of keratinocytes. In conclusion, EKC ameliorated the symptoms of psoriasis through inhibition of Th17 differentiation and activation of dendritic cells. These effects are expected to be beneficial in the treatment and prevention of psoriasis.


Subject(s)
Euphorbia/chemistry , Plant Extracts/therapeutic use , Psoriasis/drug therapy , Aminoquinolines , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/drug effects , Dendritic Cells/drug effects , Imiquimod , Interferon-gamma/drug effects , Interleukin-17/metabolism , Japan , Keratinocytes/drug effects , Medicine, East Asian Traditional , Methanol/chemistry , Mice , Mice, Inbred BALB C , Phytotherapy , Plant Extracts/administration & dosage , Plant Roots/chemistry , Psoriasis/chemically induced , Psoriasis/prevention & control , Signal Transduction/drug effects
8.
Sci Rep ; 7(1): 6248, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740220

ABSTRACT

Defective hepatic autophagy is observed in obesity and diabetes, whereas autophagy is inhibited by insulin in hepatocytes. Insulin-induced anti-autophagy is mediated by non-canonical Gαi3 signaling via an unknown mechanism. Previously, we identified the anti-autophagic activity of Tnfaip8 via activation of mammalian target of rapamycin (mTOR) in the nervous system. Here, we demonstrate that insulin temporally induces Tnfaip8, which mediates the anti-autophagic action of insulin through formation of a novel ternary complex including Tnfaip8, phosphatidylethanolamine (PE) and Gαi3. Specifically, an X-ray crystallographic study of Tnfaip8 from Mus musculus (mTnfaip8) at 2.03 Å together with LC-MS analyses reveals PE in the hydrophobic cavity. However, an mTnfaip8 mutant lacking PE does not interact with Gαi3, indicating that the PE component is critical for the anti-autophagic action of mTnfaip8 via interaction with Gαi3. Therefore, the mTnfaip8-PE complex may act as an essential upstream effector via ternary complex formation most likely with active Gαi3 during insulin-induced anti-autophagy.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Autophagy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Insulin/metabolism , Phosphatidylethanolamines/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Mice , Phosphatidylethanolamines/chemistry , Protein Binding , Protein Conformation , Sequence Homology
9.
Korean J Physiol Pharmacol ; 21(3): 335-343, 2017 May.
Article in English | MEDLINE | ID: mdl-28461776

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin condition accompanied by symptoms such as edema and hemorrhage. Kimchi is a traditional fermented Korean dish consisting of various probiotics. In this study, the therapeutic effect of Lactobacillus plantarum CJLP55 isolated from Kimchi was studied in AD-induced mice. Orally administered Lactobacillus strain, CJLP55, suppressed AD symptoms and high serum IgE levels. CJLP55 administration reduced the thickness of the epidermis, infiltration of mast cells and eosinophils into the skin lesion, enlargement of axillary lymph nodes, and increase in cell population in axillary lymph nodes. CJLP55 treatment decreased the production of type 2 cytokines, such as interleukin (IL)-4, IL-5, IL-10, IL-12, interferon (IFN)-γ, and IL-6,which were stimulated by house dust mite extracts, in the axillary lymph node cells. Orally administered CJLP55 exhibited a therapeutic effect on house dust mite-induced AD in NC/Nga mice after onset of the disease by altering immune cell activation. The Lactobacillus strain, CJLP55, isolated from Kimchi, suppressed AD. Our results suggest its possible use as a potential candidate for management of AD.

10.
Bioelectromagnetics ; 38(5): 374-385, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28370033

ABSTRACT

In recent years, there has been a dramatic increase in the number and variety of electronic devices that emit electromagnetic waves. Because people live and work in close proximity to these pieces of electrical equipment, there is growing concern surrounding the destruction of homeostasis by electromagnetic field exposure. In the present study, the effects of 60 Hz 0.8 mT extremely low-frequency electromagnetic fields (ELF-EMF) on a macrophage cell line (RAW 264.7) were examined. Under defined ELF-EMF exposure conditions, the production of nitric oxide and pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, were increased in RAW 264.7 cells and the expression of those genes was also upregulated. However, cell proliferation was not altered. Translocation of NF-κB (nuclear factor kappa B), molecules that act downstream of the pro-inflammatory cytokines, were increased to the nucleus under ELF-EMF exposure conditions. In addition, we found that ELF-EMF exposure elevated activation of nuclear factor of activated T cells (NFAT) 2, as well as positively affected the influx of calcium. Furthermore, with both the presence of a potent antioxidant (Resveratrol) and downregulation of the antioxidant-related gene Prx-1 (Peroxiredoxin-1), ELF-EMF was associated with higher inflammatory responses of macrophages. These results suggest that an ELF-EMF amplifies inflammatory responses through enhanced macrophage activation and can decrease the effectiveness of antioxidants. Bioelectromagnetics. 38:374-385, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antioxidants/pharmacology , Electromagnetic Fields/adverse effects , Animals , Cytokines/genetics , Down-Regulation/drug effects , Down-Regulation/radiation effects , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis/drug effects , Homeostasis/radiation effects , Inflammation/metabolism , Mice , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , RAW 264.7 Cells , Resveratrol , Signal Transduction/drug effects , Signal Transduction/radiation effects , Stilbenes/pharmacology
11.
Gen Physiol Biophys ; 35(4): 487-495, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27527723

ABSTRACT

The potential risks that electromagnetic fields (EMF) pose to human physiology have been debated for several decades, especially considering that EMF is almost omnipresent and some occupations involve regular exposure to particularly strong fields. In the present study, the effects of 60 Hz 0.3 mT EMF on CD4+ T cells were evaluated. Production of T cell related cytokines, IFN-γ and IL-2, was not altered in CD4+ T cells that were exposed to EMF, and cell proliferation was also unaffected. The expression of genes present in a subset of Th17 cells was upregulated following EMF exposure, and the production of effector cytokines of the IL-17A subset also increased. To determine signaling pathways that underlie these effects, phosphorylation of STAT3 and SMAD3, downstream molecules of cytokines critical for Th17 induction, was analyzed. Increased SMAD3 phosphorylation level in cells exposed to EMF, suggesting that SMAD3 may be at least in part causing the increased Th17 cell production. Differentiation of Treg, another CD4+ T cell subset induced by SMAD3 signaling, was also elevated following EMF exposure. These results suggest that 60 Hz 0.3 mT EMF exposure amplifies TGF-ß signaling and increases the generation of specific T cell subsets.


Subject(s)
Cell Differentiation/physiology , Electromagnetic Fields , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/physiology , Th17 Cells/cytology , Th17 Cells/physiology , Animals , Cell Differentiation/radiation effects , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Radiation , Male , Mice , Mice, Inbred C57BL , Radiation Dosage , Radiation Exposure , T-Lymphocytes, Regulatory/radiation effects , Th17 Cells/radiation effects
12.
Arch Pharm Res ; 39(5): 705-12, 2016 May.
Article in English | MEDLINE | ID: mdl-27071615

ABSTRACT

T cells play an important role in adaptive immune responses that destroy pathogens or infected cells. Therefore, regulation of T cell activity is important in various diseases, such as autoimmune diseases, hypersensitivity, and cancer. The conjugation of small ubiquitin-related modifier (SUMO) is a post-translational protein modification that regulates activity, stability, and subcellular translocation of target proteins. In this study, CD8(+) T cells overexpressing SUMO2 showed greater proliferation and cytotoxic activity against tumor cells in the presence of IL-6 than wild-type CD8(+) T cells in vitro. These CD8(+) T cell functions were suppressed during treatment with MEK1 or PI3K-specific inhibitors. Therefore, our findings suggest that IL-6-derived signaling pathways, including the MEK1 and PI3K pathways, are upregulated by SUMO2 overexpression. However, transgenic expression of SUMO2 in T cells did not modulate Th1/2 balance. Collectively, our results showed that SUMO2-Tg promotes cytotoxic activity against tumor cells by increasing the proliferation and cytotoxicity of CD8(+) T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Interleukin-6/immunology , Small Ubiquitin-Related Modifier Proteins/genetics , Adaptive Immunity , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/immunology , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/immunology , Immunoglobulin E/blood , Interleukin-6/pharmacology , Lymphocyte Activation/immunology , MAP Kinase Kinase 1/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Small Ubiquitin-Related Modifier Proteins/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...