Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 50(1): 1831-1842, 2019 07.
Article in English | MEDLINE | ID: mdl-30803059

ABSTRACT

Excessive alcohol consumption is associated with neuroinflammation, which likely contributes to alcohol-related pathology. However, positron emission tomography (PET) studies using radioligands for the 18-kDa translocator protein (TSPO), which is considered a biomarker of neuroinflammation, reported decreased binding in alcohol use disorder (AUD) participants compared to controls. In contrast, autoradiographic findings in alcohol exposed rats reported increases in TSPO radioligand binding. To assess if these discrepancies reflected differences between in vitro and in vivo methodologies, we compared in vitro autoradiography (using [3 H]PBR28 and [3 H]PK11195) with in vivo PET (using [11 C]PBR28) in male, Wistar rats exposed to chronic alcohol-vapor (dependent n = 10) and in rats exposed to air-vapor (nondependent n = 10). PET scans were obtained with [11 C]PBR28, after which rats were euthanized and the brains were harvested for autoradiography with [3 H]PBR28 and [3 H]PK11195 (n = 7 dependent and n = 7 nondependent), and binding quantified in hippocampus, thalamus, and parietal cortex. Autoradiography revealed significantly higher binding in alcohol-dependent rats for both radioligands in thalamus and hippocampus (trend level for [3 H]PBR28) compared to nondependent rats, and these group differences were stronger for [3 H]PK11195 than [3 H]PBR28. In contrast, PET measures obtained in the same rats showed no group difference in [11 C]PBR28 binding. Our in vitro data are consistent with neuroinflammation associated with chronic alcohol exposure. Failure to observe similar increases in [11 C]PBR28 binding in vivo suggests the possibility that a mechanism mediated by chronic alcohol exposure interferes with [11 C]PBR28 binding to TSPO in vivo. These data question the sensitivity of PBR28 PET as a methodology to assess neuroinflammation in AUD.


Subject(s)
Alcoholism/metabolism , Autoradiography , Carrier Proteins/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Parietal Lobe/metabolism , Positron-Emission Tomography , Receptors, GABA-A/metabolism , Thalamus/metabolism , Alcoholism/complications , Alcoholism/diagnostic imaging , Animals , Autoradiography/standards , Hippocampus/diagnostic imaging , In Vitro Techniques , Inflammation/diagnostic imaging , Inflammation/etiology , Intravital Microscopy , Male , Parietal Lobe/diagnostic imaging , Positron-Emission Tomography/standards , Radioligand Assay , Rats , Rats, Wistar , Thalamus/diagnostic imaging
2.
Neuropsychopharmacology ; 43(9): 1832-1839, 2018 08.
Article in English | MEDLINE | ID: mdl-29777199

ABSTRACT

Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [11C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [11C]PBR28 binding. [11C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [11C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [11C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [11C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [11C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.


Subject(s)
Alcoholism/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Cholesterol/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA/metabolism , Acetamides , Alcoholism/diagnostic imaging , Alcoholism/genetics , Animals , Brain/diagnostic imaging , Brain/drug effects , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , Protein Binding , Pyridines , Radiopharmaceuticals , Rats, Wistar , Receptors, GABA/genetics
3.
Neurobiol Dis ; 13(2): 167-76, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12828940

ABSTRACT

We determined whether the preferential toxicity of tetrahydrobiopterin (BH4) on dopamine-producing cells, which we have previously observed in vitro, might also occur in vivo and generate characteristics associated with Parkinson's disease. Intrastriatal BH4 injection caused a loss of tyrosine hydroxylase immunoreactivity and decreased dopamine content. The dopaminergic cell bodies topologically corresponding to the lesioned terminals were selectively degenerated. This was accompanied by a dose-dependent and asymmetric movement deficit in the contralateral forepaw. Direct injection of BH4 into the substantia nigra caused a loss of tyrosine hydroxylase immunoreactivity, but injection into the dorsal raphe was without effect on the GTP cyclohydrolase-immunoreactive serotonergic neurons, demonstrating selectivity for the dopaminergic system. BH4 exhibited a range of potency comparable to that of 6-hydroxydopamine. Thus, this animal model generated by the administration of BH4, the molecule endogenously present in the monoaminergic neurons, exhibited morphological, biochemical, and behavioral characteristics associated with Parkinson's disease and may be useful for studies in dopaminergic degeneration.


Subject(s)
Biopterins/analogs & derivatives , Biopterins/toxicity , Corpus Striatum/metabolism , Dopamine/metabolism , Movement Disorders/physiopathology , Nerve Degeneration , Neurotoxins/toxicity , Substantia Nigra/metabolism , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced , Female , Immunohistochemistry , Movement Disorders/etiology , Movement Disorders/metabolism , Nerve Degeneration/chemically induced , Neural Pathways/metabolism , Parkinson Disease , Presynaptic Terminals , Rats , Rats, Sprague-Dawley , Substantia Nigra/drug effects , Tyrosine 3-Monooxygenase/metabolism
4.
Curr Biol ; 13(4): 308-14, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12593796

ABSTRACT

Sprouty was originally identified in a genetic screen in Drosophila as an antagonist of fibroblast (FGF) and epidermal growth factor (EGF) signaling. Subsequently, four vertebrate homologs were discovered; among these, the human homolog Sprouty 2 (hSpry2) contains the highest degree of sequence homology to the Drosophila protein. It has been shown that hSpry2 interacts directly with c-Cbl, an E3-ubiquitin ligase, which promotes the downregulation of receptor tyrosine kinases (RTKs). In this study, we have investigated the functional consequences of the association between hSpry2 and c-Cbl. We have found that hSpry2 is ubiquitinated by c-Cbl in an EGF-dependent manner. EGF stimulation induces the tyrosine phosphorylation of hSpry2, which in turn enhances the interaction of hSpry2 with c-Cbl. The c-Cbl-mediated ubiquitination of hSpry2 targets the protein for degradation by the 26S proteasome. An enhanced proteolytic degradation of hSpry2 is also observed in response to FGF stimulation. The FGF-induced degradation of hSpry2 limits the duration of the inhibitory effect of hSpry2 on extracellular signal-regulated kinase (ERK) activation and enables the cells to recover their sensitivity to FGF stimulation. Our results indicate that the interaction of hSpry2 with c-Cbl might serve as a mechanism for the downregulation of hSpry2 during receptor tyrosine kinase signaling.


Subject(s)
Cysteine Endopeptidases/metabolism , Multienzyme Complexes/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Ubiquitin-Protein Ligases , Ubiquitin/metabolism , Animals , Humans , Phosphorylation , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins c-cbl , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...