Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686419

ABSTRACT

Hydrogels have gained significant attention as biomaterials due to their remarkable properties resembling those of the extracellular matrix (ECM). In the present investigation, we successfully synthesized interpenetrating polymer network (IPN) hydrogels using gelatin methacryloyl (GelMA) and sodium alginate (SA), incorporating various concentrations of lithium chloride (LiCl; 0, 5, and 10 mM), aiming to develop a hydrogel scaffold for bone regeneration. Notably, the compressive modulus of the IPN hydrogels remained largely unaffected upon the inclusion of LiCl. However, the hydrogel with the high concentration of LiCl exhibited reduced fragmentation after compression testing. Intriguingly, we observed a significant improvement in cellular biocompatibility, primarily attributed to activation of the Wnt/ß-catenin signaling pathway induced by LiCl. Subsequently, we evaluated the efficacy of the newly developed IPN-Li hydrogels in a rat cranial defect model and found that they substantially enhanced bone regeneration. Nevertheless, it is important to note that the introduction of high concentrations of LiCl did not significantly promote osteogenesis. This outcome can be attributed to the excessive release of Li+ ions into the extracellular matrix, hindering the desired effect. Overall, the IPN-Li hydrogel developed in this study holds great promise as a biodegradable material for bone regeneration applications.


Subject(s)
Lithium , Wnt Signaling Pathway , Animals , Rats , Alginates/pharmacology , Bone Regeneration , Hydrogels/pharmacology , Lithium/metabolism , Lithium/pharmacology , Polymers
2.
Dent Mater J ; 42(4): 610-616, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37438118

ABSTRACT

Recently, the use of orthodontic mini-screws as an anchorage for orthodontic treatment is increasing, and the degree of osseointegration of the mini-screws affects the performance of orthodontic treatment. This study aimed to evaluate the biocompatibility and osseointegration of Titanium 6Aluminum 4Vanadium (Ti-6Al-4V) alloy orthodontic mini-screws with an ibandronate-loaded TiO2 nanotube (TNT) layer. The TNT layer was formed on the surface of the Ti-6Al-4V alloy orthodontic mini-screws and loaded with ibandronate. The TNT formed by anodic oxidation formed a completely self-organized and compact structure and was stably released for 7 days after loading with ibandronate. Mini-screws loaded with ibandronate were implanted into both tibias of rats, confirming rapid initial bone regeneration. We demonstrate that the release of stable ibandronate from the TNT layer of Ti-6Al-4V alloy orthodontic mini-screws can effectively improve biocompatibility and osseointegration.


Subject(s)
Dental Implants , Nanotubes , Rats , Animals , Titanium/chemistry , Osseointegration , Ibandronic Acid , Alloys , Bone Screws , Surface Properties
3.
Biointerphases ; 18(3)2023 05 01.
Article in English | MEDLINE | ID: mdl-37144874

ABSTRACT

This study investigated the corrosion resistance and biocompatibility of magnesium coated with strontium-doped calcium phosphate (Sr-CaP) for dental and orthopedic applications. Sr-CaP was coated on biodegradable magnesium using a chemical dipping method. Magnesium coated with Sr-CaP exhibited better corrosion resistance than pure magnesium. Sr-CaP-coated magnesium showed excellent cell proliferation and differentiation. Additionally, new bone formation was confirmed in vivo. Therefore, Sr-CaP-coated magnesium with reduced degradation and improved biocompatibility can be used for orthopedic and dental implant applications.


Subject(s)
Magnesium , Osteogenesis , Coated Materials, Biocompatible , Calcium Phosphates , Calcium , Strontium , Corrosion , Alloys
4.
Food Sci Biotechnol ; 32(4): 589-598, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911334

ABSTRACT

Kefir yeast, Kluyveromyces marxianus, has been evaluated for its potential probiotic properties-survivability, non-pathogenicity, and antioxidant and anti-microbial activities. However, host gut microbiota modulation of kefir yeasts remains unclear. Here, we compared kefir yeast strains K. marxianus A4 (Km A4) and K. marxianus A5 (Km A5) with Saccharomyces boulardii ATCC MYA-796 (Sb MYA-796) by investigating their adherence to colorectal adenocarcinoma (Caco-2) cells and gut microbiota modulation in BALB/c mice. The kefir yeast strains exhibited higher intestinal cell adhesion than Sb MYA-796 (p < 0.05). Bacteroidetes, Bacteroidales, and Bacteroides were more abundant in the 1 × 108 CFU/mL of Km A4 treatment group than in the control group (p < 0.05). Moreover, 1 × 108 CFU/mL of Km A5 increased Corynebacteriales and Corynebacterium compared to the 1 × 108 CFU/mL of Km A4 treatment group (p < 0.01). The results showed that Km A4 and Km A5 had good Caco-2 cell adhesion ability and modulated gut microbiota upon short-term administration in healthy mice. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01268-3.

5.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36902998

ABSTRACT

Various poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with the ginger fraction were fabricated by controlling the electrospray parameters and their biocompatibility and antibacterial activity were identified in this study. The morphology of the microspheres was observed using scanning electron microscopy. The core-shell structures of the microparticles and the presence of ginger fraction in the microspheres were confirmed by fluorescence analysis using a confocal laser scanning microscopy system. In addition, the biocompatibility and antibacterial activity of PLGA microspheres loaded with ginger fraction were evaluated through a cytotoxicity test using osteoblast MC3T3-E1 cells and an antibacterial test using Streptococcus mutans and Streptococcus sanguinis, respectively. The optimum PLGA microspheres loaded with ginger fraction were fabricated under electrospray operational conditions with 3% PLGA concentration in solution, an applied voltage of 15.5 kV, a flow rate of 15 µL/min in the shell nozzle, and 3 µL/min in the core nozzle. The effectual antibacterial effect and enhanced biocompatibility were identified when a 3% ginger fraction in PLGA microspheres was loaded.

6.
Probiotics Antimicrob Proteins ; 15(1): 129-138, 2023 02.
Article in English | MEDLINE | ID: mdl-35034322

ABSTRACT

Kefir is a traditional fermented milk containing beneficial bacteria and yeasts. Despite Kluyveromyces marxianus, isolated from kefir, gaining increasing attention as a potential probiotic yeast owing to its biological function, Saccharomyces boulardii is the only species considered as a probiotic yeast. We evaluated the safety of K. marxianus strains A4 and A5, isolated from Korean kefir, in comparison with that of S. boulardii. Virulence attributes were preliminarily assessed in vitro including their ability of gelatin hydrolysis, pseudohyphae formation, and hemolysis. To evaluate in vivo safety, the strains were challenged in a healthy animal model, four-week-old female BALB/c mice. Mice were orally administered 0.2 mL of 0.9% sterilized saline (NC_S; n = 6), S. boulardii ATCC MYA-796 (high concentration, S.b_H; low concentration, S.b_L; n = 6 for each), K. marxianus A4 (high concentration, A4_H; low concentration, A4_L; n = 6 for each), or K. marxianus A5 (high concentration, A5_H; low concentration, A5_L; n = 6 for each) for 2 weeks. At study end, body weight, spleen and liver weights, and blood parameters were assessed. K. marxianus A4 and A5 were tested negative for gelatinase and hemolysis. Overall, hematological, plasma biochemical, and cytokine (interleukin-1ß and tumor necrosis factor-α) parameters were comparable between the experimental and negative control (NC) groups. Notably, the interleukin-6 level of the A5_H group was significantly lower than that of the NC group (p < 0.05), suggesting anti-inflammatory potential of K. marxianus A5.


Subject(s)
Kefir , Female , Animals , Mice , Kefir/microbiology , Hemolysis , Saccharomyces cerevisiae , Republic of Korea
7.
Polymers (Basel) ; 14(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36501711

ABSTRACT

The gingerols and shogaols derived from ginger have excellent antibacterial properties against oral bacteria. However, some researchers have noted their dose-dependent potential toxicity. The aim of this study was to enhance the biofunctionality and biocompatibility of the application of ginger to dental titanium screws. To increase the amount of coating of the n-hexane-fractionated ginger on the titanium surface and to control its release, ginger was loaded in different concentrations in a photo-crosslinkable GelMA hydrogel. To improve coating stability of the ginger hydrogel (GH), the wettability of the surface was modified by pre-calcification (TNC), then GH was applied on the surface. As a result, the ginger fraction, with a high content of phenolic compounds, was effective in the inhibition of the growth of S. mutans and P. gingivalis. The GH slowly released the main compounds of ginger and showed excellent antibacterial effects with the concentration. Although bone regeneration was slightly reduced with the ginger-loading concentration due to the increased contents of polyphenolic compounds, it was strongly supplemented through the promotion of osteosis formation by the hydrogel and TNC coating. Finally, we proved the biosafety and superior biofunctionalities the GH-TNC coating on a Ti implant. However, it is recommended to use an appropriate concentration, because an excessive concentration of ginger may affect the improved biocompatibility in clinical applications.

8.
Animals (Basel) ; 12(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35681873

ABSTRACT

Enterococcus spp. are pathogens that cause environmental mastitis and are difficult to eliminate owing to their resistance to antibiotics. To compare the virulence characteristics of isolates from bovine mastitis milk (BMM) and bovine normal raw milk (NRM), we isolated Enterococcus spp. from 39 dairy farms in South Korea from 2015−2020. A total of 122 Enterococcus spp. were identified, with Enterococcus faecalis (73.8%) accounting for the majority, followed by Enterococcus faecium (26.2%). E. faecalis isolated from BMM harbored gelE, asa1, esp, and cylA genes with a prevalence of 85.7, 71.4, 54.3, and 30.0%, respectively. These genes were significantly more abundant in BMM than in NRM, except for asa1 (p < 0.0001). Interestingly, strong biofilm and gelatinase formation was predominately observed for BMM isolates and this was significantly correlated to the presence of esp and gelE genes (p < 0.05). BMM isolates demonstrated higher resistance to tetracycline (59.3%), followed by chloramphenicol (21.0%), rifampicin (18.5%), doxycycline (4.9%), ciprofloxacin (1.2%), and nitrofurantoin (1.2%), than those from NRM. E. faecalis harboring esp, gelE, and cylA may be causative agents for bovine mastitis and act as a reservoir for the transmission of virulence factors to humans.

9.
Prog Orthod ; 23(1): 11, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35368222

ABSTRACT

BACKGROUND: Mini-screws are widely used as temporary anchorages in orthodontic treatment, but have the disadvantage of showing a high failure rate of about 10%. Therefore, orthodontic mini-screws should have high biocompatibility and retention. Previous studies have demonstrated that the retention of mini-screws can be improved by imparting bioactivity to the surface. The method for imparting bioactivity proposed in this paper is to sequentially perform anodization, periodic pre-calcification, and heat treatments with a Ti-6Al-4V ELI alloy mini-screw. MATERIALS AND METHODS: A TiO2 nanotube-structured layer was formed on the surface of the Ti-6Al-4V ELI alloy mini-screw through anodization in which a voltage of 20 V was applied to a glycerol solution containing 20 wt% H2O and 1.4 wt% NH4F for 60 min. Fine granular calcium phosphate precipitates of HA and octacalcium phosphate were generated as clusters on the surface through the cyclic pre-calcification and heat treatments. The cyclic pre-calcification treatment is a process of immersion in a 0.05 M NaH2PO4 solution and a saturated Ca(OH)2 solution at 90 °C for 1 min each. RESULTS: It was confirmed that the densely structured protrusions were precipitated, and Ca and P concentrations, which bind and concentrate endogenous bone morphogenetic proteins, increased on the surface after simulated body fluid (SBF) immersion test. In addition, the removal torque of the mini-screw fixed into rabbit tibias for 4 weeks was measured to be 8.70 ± 2.60 N cm. CONCLUSIONS: A noteworthy point in this paper is that the Ca and P concentrations, which provide a scaffold suitable for endogenous bone formation, further increased over time after SBF immersion of the APH group specimens. The other point is that our mini-screws have a significantly higher removal torque compared to untreated mini-screws. These results represent that the mini-screw proposed in this paper can be used as a mini-screw for orthodontics.


Subject(s)
Hot Temperature , Osseointegration , Alloys , Animals , Biocompatible Materials , Bone Screws , Humans , Rabbits , Titanium
10.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35159914

ABSTRACT

Metallic implants (mesh) for guided bone regeneration can result in foreign body reactions with surrounding tissues, infection, and inflammatory reactions caused by micro-organisms in the oral cavity after implantation. This study aimed to reduce the possibility of surgical failure caused by microbial infection by loading antibacterial manuka oil in a biocompatible nanostructure surface on Ti and to induce stable bone regeneration in the bone defect. The manuka oil from New Zealand consisted of a rich ß-triketone chemotype, leptospermone, which showed strong inhibitory effects against several bacteria, even at very low oil concentrations. The TiO2 nanotubular layer formed by anodization effectively enhanced the surface hydrophilicity, bioactivity, and fast initial bone regeneration. A concentration of manuka oil in the range of 0.02% to less than 1% can have a synergistic effect on antibacterial activity and excellent biocompatibility. A manuka oil coating (especially with a concentration of 0.5%) on the TiO2 nanotube layer can be expected not only to prevent stenosis of the connective tissue around the mesh and inflammation by microbial infection but also to be effective in stable and rapid bone regeneration.

11.
Materials (Basel) ; 14(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34772160

ABSTRACT

This study investigated the biocompatibility of strontium-doped calcium phosphate (Sr-CaP) coatings on pure magnesium (Mg) surfaces for bone applications. Sr-CaP coated specimens were obtained by chemical immersion method on biodegradable magnesium. In this study, Sr-CaP coated magnesium was obtained by immersing pure magnesium in a solution containing Sr-CaP at 80 °C for 3 h. The corrosion resistance and biocompatibility of magnesium according to the content of Sr-CaP coated on the magnesium surface were evaluated. As a result, the corrosion resistance of Sr-CaP coated magnesium was improved compared to pure magnesium. In addition, it was confirmed that the biocompatibility of the group containing Sr was increased. Thus, the Ca-SrP coating with a reduced degradation and improved biocompatibility could be used in Mg-based orthopedic implant applications.

12.
Polymers (Basel) ; 13(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34372138

ABSTRACT

In this study, a hydrogel using single and double crosslinking was prepared using GelMA, a natural polymer, and the effect was evaluated when the double crosslinked hydrogel and tannic acid were treated. The resulting hydrogel was subjected to physicochemical property evaluation, biocompatibility evaluation, and animal testing. The free radicals generated through APS/TEMED have a scaffold form with a porous structure in the hydrogel, and have a more stable structure through photo crosslinking. The double crosslinked hydrogel had improved mechanical strength and better results in cell compatibility tests than the single crosslinked group. Moreover, in the hydrogel transplanted into the femur of a rat, the double crosslinked group showed an osteoinductive response due to the attachment of bone minerals after 4 and 8 weeks, but the single crosslinked group did not show an osteoinductive response due to rapid degradation. Treatment with a high concentration of tannic acid showed significantly improved mechanical strength through H-bonding. However, cell adhesion and proliferation were limited compared to the untreated group due to the limitation of water absorption capacity, and no osteoinduction reaction was observed. As a result, it was confirmed that the treatment of high-concentration tannic acid significantly improved mechanical strength, but it was not a suitable method for improving bone induction due to the limitation of water absorption.

13.
ACS Omega ; 6(27): 17433-17441, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278129

ABSTRACT

Gelatin methacryloyl (GelMA) has been widely studied as a biomaterial for tissue engineering. Most studies focus on mammalian gelatin, but certain factors, such as mammalian diseases and diet restrictions, limit the use of mammalian gelatin. Thus, fish gelatin has received much attention as a substitute material in recent years. To develop a broadly applicable hydrogel with excellent properties, an interpenetrating polymer network (IPN) hydrogel was synthesized, since IPN hydrogels consist of at least two different hydrogel components to combine their advantages. In this study, we prepared GelMA using type A and fish gelatin and then synthesized IPN hydrogels using GelMA with alginate. GelMA single-network hydrogels were used as a control group. The favorable mechanical properties of type A and fish hydrogels improved after the synthesis of the IPN hydrogels. Type A and fish IPN hydrogels showed different mechanical properties (mechanical strength, swelling ratio, and degradation rate) and different cross-sectional morphologies, since the degree of mechanical enhancement in fish IPN hydrogels was less than that in type A; however, the cell biocompatibilities were not significantly different. Therefore, these findings could serve as a reference for future studies when selecting GelMA as a biological material for tissue engineering.

14.
Front Bioeng Biotechnol ; 9: 652334, 2021.
Article in English | MEDLINE | ID: mdl-33996780

ABSTRACT

Metallic biodegradable magnesium (Mg) is a promising material in the biomedical field owing to its excellent biocompatibility, bioabsorbability, and biomechanical characteristics. Calcium phosphates (CaPs) were coated on the surface of pure Mg through a simple alkali-hydrothermal treatment. The surface properties of CaP coatings formed on Mg were identified through wettability, direct cell seeding, and release tests since the surface properties of biomaterials can affect the reaction of the host tissue. The effect of CaP-coated Mg mesh on guided bone regeneration in rat calvaria with the critical-size defect was also evaluated in vivo using several comprehensive analyses in comparison with untreated Mg mesh. Following the application of protective CaP coating, the surface energy of Mg improved with higher hydrophilicity and cell affinity. At the same time, the CaP coating endowed Mg with higher Ca affinity and lower degradation. The Mg mesh with CaP coating had higher osteointegration and bone affinity than pristine Mg mesh.

15.
Nanomaterials (Basel) ; 11(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801249

ABSTRACT

In the field of bone tissue, maintaining adequate mechanical strength and tissue volume is an important part. Recently, biphasic calcium phosphate (BCP) was fabricated to solve the shortcomings of hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP), and it is widely studied in the field of bone-tissue engineering. In this study, a composite hydrogel was fabricated by applying BCP to gelatin methacrylate (GelMA). It was tested by using a mechanical tester, to characterize the mechanical properties of the prepared composite hydrogel. The fabricated BCP was analyzed through FTIR and XRD. As a result, a different characteristic pattern from hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP) was observed, and it was confirmed that it was successfully bound to the hydrogel. Then, the proliferation and differentiation of preosteoblasts were checked to evaluate cell viability. The analysis results showed high cell viability and relatively high bone differentiation ability in the composite hydrogel to which BCP was applied. These features have been shown to be beneficial for bone regeneration by maintaining the volume and shape of the hydrogel. In addition, hydrogels can be advantageous for clinical use, as they can shape the structure of the material for custom applications.

16.
Foodborne Pathog Dis ; 18(6): 419-425, 2021 06.
Article in English | MEDLINE | ID: mdl-33900862

ABSTRACT

The prevalence of Listeria monocytogenes in raw beef and in slaughterhouse environments was investigated from April 2019 to February 2020. Three hundred raw beef samples were purchased from 50 retailers and 10 restaurants (5 samples per source). One hundred and thirty-four samples from slaughterhouse environments were collected by swabbing (10 × 10 cm) the surfaces, gloves, splitting saw, and drains. L. monocytogenes was detected and identified according to the method described in ISO 11290-1, and confirmed by 16S rRNA sequencing. L. monocytogenes was detected in raw beef (2/300, 0.7%), gloves used in carcass splitting (6/21, 28.6%), the splitting saw (1/18, 5.6%), and the drain zone (1/15, 6.7%). All isolates were serotype 1/2a or 1/2c, based on screening using multiplex PCR-based serogrouping assay and serotyping kit for O-H antigens. Pulsed-field gel electrophoresis (PFGE) following ApaI digestion of eight PFGE pulsotypes and four PFGE groups were identified. Biofilm formation analysis using Crystal Violet staining revealed the highest biofilm formation in strain LM-16, followed by D190613. Although L. monocytogenes isolates were susceptible to most antimicrobials, some resistance to penicillin (8/15, 53.3%) and tetracycline (2/15, 13.3%) was observed. Through PFGE, G190426, G190829, and G200210 isolated from the same location in this study were genetically homologous similar to the LM-16 strain, previously isolated from beef carcass in 2006. These results suggest that LM-16 has been continuously present in biofilms in the slaughterhouse environments since 2006. Our study indicates that L. monocytogenes contamination in raw beef could consistently occur during beef processing in slaughterhouse environments through contact with gloves, splitting saws, and drains.


Subject(s)
Abattoirs , Environmental Pollution/analysis , Food Microbiology/statistics & numerical data , Listeria monocytogenes/isolation & purification , Red Meat/microbiology , Animals , Anti-Bacterial Agents , Cattle , Drug Resistance, Bacterial , Electrophoresis, Gel, Pulsed-Field , Microbial Sensitivity Tests , Prevalence , Republic of Korea/epidemiology , Serotyping
17.
J Int Med Res ; 48(10): 300060520964369, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33103504

ABSTRACT

OBJECTIVE: Lung sonography can be helpful to determine the position of a left-sided double-lumen tube (DLT). However, clinical experience is required for correct assessment. We investigated whether lung sonography can improve the diagnostic efficacy of determining the DLT position in novices and experts. METHODS: In this randomised prospective clinical study, 88 patients were allocated to two groups using auscultation or lung sonography for initial assessment of the DLT position. In each group, two repeated assessments were performed; the first was performed by a novice, and the second was performed by an expert. The final DLT position was confirmed by fibre-optic bronchoscopy. The primary outcome was the diagnostic efficacy (including overall accuracy, sensitivity, and specificity) in confirming the DLT position. RESULTS: In both the novices and experts, the specificity of determining the DLT position was significantly higher with lung sonography than auscultation (60.0% vs. 21.7% and 66.7% vs. 37.5%, respectively). Additionally, the predictability of an incorrect position was similar between the novices and experts using lung sonography (area under the curve of 0.665 and 0.690, respectively). CONCLUSIONS: Lung sonography can improve the diagnostic efficacy of detecting an incorrect DLT position in both novices and experts.


Subject(s)
Intubation, Intratracheal , Thoracic Surgical Procedures , Bronchoscopy , Humans , Prospective Studies , Trachea
18.
Anaerobe ; 64: 102235, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32619505

ABSTRACT

Clostridium perfringens is a ubiquitous, Gram-positive, spore-forming bacterium. It can contaminate many types of retail meat products and cause food poisoning by producing enterotoxins in the small intestines of humans and domestic animals. We investigated the prevalence, toxin-encoding gene profile, and antimicrobial resistance of C. perfringens in beef, chicken, and pork meat purchased from retail markets in Seoul, Korea. C. perfringens was detected according to the International Organization for Standardization 7937, with some modifications, and confirmed using the Vitek 2 system. In total, 38 C. perfringens strains were isolated from 200 meat samples (38/200, 19%; thirty-three from chicken, and five from beef). Among the six toxins evaluated, including alpha, beta, epsilon, iota, enterotoxin (encoded in the cpe gene), and netB, only the cpa gene was detected in all isolates by polymerase chain reaction (PCR) amplification. The antimicrobial resistance of the isolates was evaluated using the agar dilution method and resistance to ampicillin (12/38, 31.6%), tetracycline (38/38, 100%), chloramphenicol (26/38, 68.4%), metronidazole (13/38, 34.2%), and imipenem (27/38, 71%) was observed. Interestingly, 30 of the 38 isolates (78.9%) were multiple-drug resistant, showing resistance to more than three different antimicrobial classes.


Subject(s)
Bacterial Toxins/genetics , Clostridium perfringens/drug effects , Clostridium perfringens/genetics , Drug Resistance, Multiple, Bacterial , Meat/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Cattle , Chickens/microbiology , Clostridium perfringens/isolation & purification , DNA, Bacterial/genetics , Food Microbiology , Microbial Sensitivity Tests , Pork Meat/microbiology , Prevalence , Red Meat/microbiology , Republic of Korea , Swine
19.
Front Vet Sci ; 7: 614750, 2020.
Article in English | MEDLINE | ID: mdl-33426033

ABSTRACT

Given the broad overlap of normal and abnormal liver tissue in the subjective evaluation of the liver in conventional B-mode ultrasonography, there is a need for a non-invasive and quantitative method for the diagnosis of liver disease. Novel two-dimensional shear-wave elastography (2-D SWE) can measure tissue stiffness by propagation of the shear wave induced using acoustic radiation force impulse in real time. To the best of our knowledge, two-dimensional shear-wave measurement of the liver in cats has not been reported to date. This study assessed the feasibility, reliability, normal values, and related influencing factors of 2-D SWE for assessment of the feline liver without anesthesia and breath-holding. Two-dimensional shear-wave ultrasonography was performed by two evaluators at the right and left sides of the liver. Twenty-nine client-owned clinically healthy adult cats were included. The means and standard deviations for the shear-wave speed and stiffness in the right liver were 1.52 ± 0.13 m/s and 6.94 ± 1.26 kPa, respectively, and those for the left liver were 1.61 ± 0.15 m/s and 7.90 ± 1.47 kPa, respectively. Shear-wave speed (P = 0.005) and stiffness (P = 0.002) were significantly lower in the right liver when compared to the left. The intraclass correlation value for liver stiffness was 0.835 and 0.901 for the right and left liver, respectively, indicating high interobserver agreement. Age, weight, body condition score (BCS), gabapentin administration, and measurement depths were not significantly correlated with liver stiffness or elastography measurements (P > 0.05). Our findings suggest that 2-D SWE measurements of the liver are not influenced significantly by age, weight, or BCS and can be reliably performed without anesthesia and breath-holding in cats. The values determined here can help form the basis for reference elastography values for evaluation of the feline liver.

20.
Odontology ; 108(2): 231-239, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31564006

ABSTRACT

Lithium disilicate glass-ceramics with high mechanical strength are being widely used as ingots for heat-pressing technique and blocks for CAD/CAM processing in clinical dentistry as aesthetic prosthetic materials. The purpose of this study was to evaluate the fracture strength of single crowns made of the different types of lithium disilicate glass-ceramics. Single crowns for mandibular second premolar with thickness of 1.5 mm were manufactured. IPS e.max Press and Amber Press crowns were produced by heat-pressing, and IPS e.max CAD and Rosetta SM crowns was produced by milling. Amber Lisi-POZ crown was produced by heat-pressing on the zirconia frame. Fracture strength test was performed at 10 degrees of inclination toward the load after bonding crown on metal abutment using dual-curing resin cement. Statistical analysis of fracture strength was conducted through Weibull statistics (n = 15 per group). The mean fracture strength (2087.4 N) of Amber Lisi-POZ group produced by heat-pressing on the zirconia frame was significantly higher than that (1479.8 N) of Rosetta SM group produced by milling. Weibull coefficients for IPS e.max CAD and Rosetta SM groups were, respectively, 14.44 and 9.39, and those for IPS e.max Press, Amber Press, and Amber Lisi-POZ groups produced by heat-pressing were in the range between 4.72 and 5.16. In conclusion, the fracture strength of Amber Lisi-POZ crown with zirconia framework was the highest, and the buccal cusps fractured from the central groove of the all crowns. Weibull modulus of crowns produced by milling was higher than those of crowns produced by heat-pressing.


Subject(s)
Dental Porcelain , Flexural Strength , Ceramics , Computer-Aided Design , Crowns , Dental Prosthesis Design , Dental Restoration Failure , Dental Stress Analysis , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...