Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692796

ABSTRACT

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Subject(s)
Exosomes , Magnetite Nanoparticles , MicroRNAs , Parkinson Disease , Transferrin , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Exosomes/chemistry , MicroRNAs/blood , Magnetite Nanoparticles/chemistry , Transferrin/chemistry , Brain/metabolism , Biomarkers/blood , Male , Female
2.
ACS Nano ; 17(18): 18332-18345, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37703463

ABSTRACT

Surface-enhanced Raman scattering (SERS) has evolved into a robust analytical technique capable of detecting a variety of biomolecules despite challenges in securing a reliable Raman signal. Conventional SERS-based nucleic acid detection relies on hybridization assays, but reproducibility and signal strength issues have hindered research on directly amplifying nucleic acids on SERS surfaces. This study introduces a deep learning assisted ZnO-Au-SERS-based direct amplification (ZADA) system for rapid, sensitive molecular diagnostics. The system employs a SERS substrate fabricated by depositing gold on uniformly grown ZnO nanorods. These nanorods create hot spots for the amplification of the target nucleic acids directly on the SERS surface, eliminating the need for postamplification hybridization and Raman reporters. The limit of detection of the ZADA system was superior to those of the conventional amplification methods. Clinical validation of the ZADA system with coronavirus disease 2019 (COVID-19) samples from human patients yielded a sensitivity and specificity of 92.31% and 81.25%, respectively. The integration of a deep learning program further enhanced sensitivity and specificity to 100% and reduced SERS analysis time, showcasing the potential of the ZADA system for rapid, label-free disease diagnosis via direct nucleic acid amplification and detection within 20 min.


Subject(s)
COVID-19 , Deep Learning , Nucleic Acids , Zinc Oxide , Humans , Spectrum Analysis, Raman , Pathology, Molecular , Reproducibility of Results , COVID-19 Testing
3.
iScience ; 26(2): 105922, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36866037

ABSTRACT

Fungi cause various forms of invasive fungal disease (IFD), and fungal sensitization can contribute to the development of asthma, asthma severity, and other hypersensitivity diseases, such as atopic dermatitis (AD). In this study, we introduce a facile and controllable approach, using homobifunctional imidoester-modified zinc nano-spindle (HINS), for attenuating hyphae growth of fungi and reducing the hypersensitivity response complications in fungi-infected mice. To extend the study of the specificity and immune mechanisms, we used HINS-cultured Aspergillus extract (HI-AsE) and common agar-cultured Aspergillus extract (Con-AsE) as the refined mouse models. HINS composites within the safe concentration range inhibited the hyphae growth of fungi but also reduce the number of fungal pathogens. Through the evaluation of lung and skin tissues from the mice, asthma pathogenesis (lung) and the hypersensitivity response (skin) to invasive aspergillosis were least severe in HI-AsE-infected mice. Therefore, HINS composites attenuate asthma and the hypersensitivity response to invasive aspergillosis.

4.
Biosensors (Basel) ; 13(2)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36832025

ABSTRACT

Mycobacterium tuberculosis (MTB) is a communicable disease and still remains a threat to common health. Thus, early diagnosis and treatment are required to prevent the spread of infection. Despite the recent advances in molecular diagnostic systems, the commonly used MTB diagnostic tools are laboratory-based assays, such as mycobacterial culture, MTB PCR, and Xpert MTB/RIF. To address this limitation, point-of-care testing (POCT)-based molecular diagnostic technologies capable of sensitive and accurate detection even in environments with limited sources are needed. In this study, we propose simple tuberculosis (TB) molecular diagnostic assay by combining sample preparation and DNA-detection steps. The sample preparation is performed using a syringe filter with amine-functionalized diatomaceous earth and homobifunctional imidoester. Subsequently, the target DNA is detected by quantitative PCR (polymerase chain reaction). The results can be obtained within 2 h from samples with large volumes, without any additional instruments. The limit of detection of this system is 10 times higher than those of conventional PCR assays. We validated the clinical utility of the proposed method in 88 sputum samples obtained from four hospitals in the Republic of Korea. Overall, the sensitivity of this system was superior to those of other assays. Therefore, the proposed system can be useful for MTB diagnosis in limited-resource settings.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/diagnosis , Pathology, Molecular , Sensitivity and Specificity , Sputum/microbiology , Molecular Diagnostic Techniques/methods
5.
Biomater Res ; 27(1): 12, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797805

ABSTRACT

BACKGROUND: Brain-derived exosomes released into the blood are considered a liquid biopsy to investigate the pathophysiological state, reflecting the aberrant heterogeneous pathways of pathological progression of the brain in neurological diseases. Brain-derived blood exosomes provide promising prospects for the diagnosis of neurological diseases, with exciting possibilities for the early and sensitive diagnosis of such diseases. However, the capability of traditional exosome isolation assays to specifically isolate blood exosomes and to characterize the brain-derived blood exosomal proteins by high-throughput proteomics for clinical specimens from patients with neurological diseases cannot be assured. We report a magnetic transferrin nanoparticles (MTNs) assay, which combined transferrin and magnetic nanoparticles to isolate brain-derived blood exosomes from clinical samples. METHODS: The principle of the MTNs assay is a ligand-receptor interaction through transferrin on MTNs and transferrin receptor on exosomes, and electrostatic interaction via positively charged MTNs and negatively charged exosomes to isolate brain-derived blood exosomes. In addition, the MTNs assay is simple and rapid (< 35 min) and does not require any large instrument. We confirmed that the MTNs assay accurately and efficiently isolated exosomes from serum samples of humans with neurodegenerative diseases, such as dementia, Parkinson's disease (PD), and multiple sclerosis (MS). Moreover, we isolated exosomes from serum samples of 30 patients with three distinct neurodegenerative diseases and performed unbiased proteomic analysis to explore the pilot value of brain-derived blood protein profiles as biomarkers. RESULTS: Using comparative statistical analysis, we found 21 candidate protein biomarkers that were significantly different among three groups of neurodegenerative diseases. CONCLUSION: The MTNs assay is a convenient approach for the specific and affordable isolation of extracellular vesicles from body fluids for minimally-invasive diagnosis of neurological diseases.

6.
Bioeng Transl Med ; 8(1): e10348, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684108

ABSTRACT

Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.

7.
Sens Actuators B Chem ; 378: 133193, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36570722

ABSTRACT

Rapid, sensitive, and specific detection of the severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 during early infection is pivotal in controlling the spread and pathological progression of Coronavirus Disease 2019 (COVID-19). Thus, highly accurate, affordable, and scalable point-of-care (POC) diagnostic technologies are necessary. Herein, we developed a rapid and efficient self-directed molecular diagnostic (SdMDx) system for SARS-CoV-2. This system combines the sample preparation step, including virus enrichment and extraction processes, which involve dimethyl suberimidate dihydrochloride and diatomaceous earth functionalized with 3-aminopropyl(diethoxy)methylsilane, and the detection step using loop-mediated isothermal amplification-lateral flow assay (LAMP-LFA). Using the SdMDx system, SARS-CoV-2 could be detected within 47 min by hand without the need for any larger instruments. The SdMDx system enabled detection as low as 0.05 PFU in the culture fluid of SARS-CoV-2-infected VeroE6 cells. We validated the accuracy of the SdMDx system on 38 clinical nasopharyngeal specimens. The clinical utility of the SdMDx system for targeting the S gene of SARS-CoV-2 showed 94.4% sensitivity and 100% specificity. This system is more sensitive than antigen and antibody assays, and it minimizes the use of complicated processes and reduces contamination risks. Accordingly, we demonstrated that the SdMDx system enables a rapid, accurate, simple, efficient, and inexpensive detection of SARS-CoV-2 at home, in emergency facilities, and in low-resource sites as a pre-screening platform and POC testing through self-operation and self-diagnosis.

8.
Biosensors (Basel) ; 12(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36004993

ABSTRACT

Detection of oncogene mutations has significance for early diagnosis, customized treatment, treatment progression, and drug resistance monitoring. Here, we introduce a rapid, sensitive, and specific mutation detection assay based on the hot-spot-specific probe (HSSP), with improved clinical utility compared to conventional technologies. We designed HSSP to recognize KRAS mutations in the DNA of colorectal cancer tissues (HSSP-G12D (GGT→GAT) and HSSP-G13D (GGC→GAC)) by integration with real-time PCR. During the PCR analysis, HSSP attaches to the target mutation sequence for interference with the amplification. Then, we determine the mutation detection efficiency by calculating the difference in the cycle threshold (Ct) values between HSSP-G12D and HSSP-G13D. The limit of detection to detect KRAS mutations (G12D and G13D) was 5-10% of the mutant allele in wild-type populations. This is superior to the conventional methods (≥30% mutant allele). In addition, this technology takes a short time (less than 1.5 h), and the cost of one sample is as low as USD 2. We verified clinical utility using 69 tissue samples from colorectal cancer patients. The clinical sensitivity and specificity of the HSSP assay were higher (84% for G12D and 92% for G13D) compared to the direct sequencing assay (80%). Therefore, HSSP, in combination with real-time PCR, provides a rapid, highly sensitive, specific, and low-cost assay for detecting cancer-related mutations. Compared to the gold standard methods such as NGS, this technique shows the possibility of the field application of rapid mutation detection and may be useful in a variety of applications, such as customized treatment and cancer monitoring.


Subject(s)
Colorectal Neoplasms , ras Proteins , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Real-Time Polymerase Chain Reaction , ras Proteins/genetics , ras Proteins/therapeutic use
9.
J Extracell Vesicles ; 11(2): e12195, 2022 02.
Article in English | MEDLINE | ID: mdl-35188341

ABSTRACT

Cancer cell-derived extracellular vesicles (EVs) are promising biomarkers for cancer diagnosis and prognosis. However, the lack of rapid and sensitive isolation techniques to obtain EVs from clinical samples at a sufficiently high yield limits their practicability. Chimeric nanocomposites of lactoferrin conjugated 2,2-bis(methylol)propionic acid dendrimer-modified magnetic nanoparticles (LF-bis-MPA-MNPs) are fabricated and used for simple and sensitive EV isolation from various biological samples via a combination of electrostatic interaction, physically absorption, and biorecognition between the surfaces of the EVs and the LF-bis-MPA-MNPs. The speed, efficiency, recovery rate, and purity of EV isolation by the LF-bis-MPA-MNPs are superior to those obtained by using established methods. The relative expressions of exosomal microRNAs (miRNAs) from isolated EVs in cancerous cell-derived exosomes are verified as significantly higher than those from noncancerous ones. Finally, the chimeric nanocomposites are used to assess urinary exosomal miRNAs from urine specimens from 20 prostate cancer (PCa), 10 benign prostatic hyperplasia (BPH), patients and 10 healthy controls. Significant up-regulation of miR-21 and miR-346 and down-regulation of miR-23a and miR-122-5p occurs in both groups compared to healthy controls. LF-bis-MPA-MNPs provide a rapid, simple, and high yield method for human excreta analysis in clinical applications.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Nanocomposites , Prostatic Neoplasms , Exosomes/metabolism , Extracellular Vesicles/metabolism , Humans , Male , MicroRNAs/metabolism , Prostatic Neoplasms/diagnosis
10.
Theranostics ; 12(1): 186-206, 2022.
Article in English | MEDLINE | ID: mdl-34987641

ABSTRACT

Reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (Pol II) is essential for gene expression control. How altering the phosphorylation of the CTD contributes to gene expression in mammalian systems remains poorly understood. Methods: Primary mouse embryonic fibroblasts, hepatocytes, and embryonic stem cells were isolated from conditional Ssu72f/f mice. To knockout the mouse Ssu72 gene, we infected the cells with adenoviruses of incorporated luciferase and Cre recombinase, respectively. RNA sequencing, ChIP sequencing, ChIP assay, immunoblot analyses, qRT-PCR assay, and immunostaining were performed to gain insights into the functional mechanisms of Ssu72 loss in Pol II dynamics. Results: Using primary cells isolated from Ssu72 conditional knockout and transgenic mice, we found that mammalian Ssu72-mediated transcriptional elongation rather than polyadenylation or RNA processing contributed to the transcriptional regulation of various genes. Depletion of Ssu72 resulted in aberrant Pol II pausing and elongation defects. Reduced transcriptional elongation efficiency tended to preferentially affect expression levels of actively transcribed genes in a tissue-specific manner. Furthermore, Ssu72 CTD phosphatase seemed to regulate the phosphorylation levels of CTD Ser2 and Thr4 through accurate modulation of P-TEFb activity and recruitment. Conclusions: Our findings demonstrate that mammalian Ssu72 contributes to the transcription of tissue-specific actively transcribed gene expression by regulating reciprocal phosphorylation of Pol II CTD.


Subject(s)
Phosphoprotein Phosphatases/metabolism , RNA Polymerase II/metabolism , Animals , Cell Line , Embryo, Mammalian , Fibroblasts , Gene Expression , Mice , Mice, Knockout , Mice, Transgenic , Primary Cell Culture
11.
Nano Converg ; 8(1): 32, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34694514

ABSTRACT

As the second wave of COVID-19 hits South Asia, an increasing deadly complication 'fungal infections (such as Mycosis, Candida and Aspergillus) outbreak' has been raised concern about the insufficient technologies and medicals for its diagnosis and therapy. Biosilica based nano-therapy can be used for therapeutic efficacy, yet their direct role as antibiotic agent with biocompatibility and stability remains unclear. Here, we report that a diatomaceous earth (DE) framework semiconductor composite conjugated DE and in-house synthesized zinc oxide (DE-ZnO), as an antibiotic agent for the enhancement of antibiotic efficacy and persistence. We found that the DE-ZnO composite had enhanced antibiotic activity against fungi (A. fumigatus) and Gram-negative bacteria (E. coli, S. enterica). The DE-ZnO composite provides enhancing large surface areas for enhancement of target pathogen binding affinity, as well as produces active ions including reactive oxygen species and metal ion for breaking the cellular network of fungi and Gram-negative bacteria. Additionally, the toxicity of DE-ZnO with 3 time less amount of dosage is 6 times lower than the commercial SiO2-ZnO. Finally, a synergistic effect of DE-ZnO and existing antifungal agents (Itraconazole and Amphotericin B) showed a better antifungal activity, which could be reduced the side effects due to the antifungal agents overdose, than a single antibiotic agent use. We envision that this DE-ZnO composite can be used to enhance antibiotic activity and its persistence, with less-toxicity, biocompatibility and high stability against fungi and Gram-negative bacteria which could be a valuable candidate in medical science and industrial engineering.

12.
Biosensors (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34677329

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, is rapidly spreading and severely straining the capacities of public health communities and systems around the world. Therefore, accurate, rapid, and robust diagnostic tests for COVID-19 are crucial to prevent further spread of the infection, alleviate the burden on healthcare and diagnostic facilities, and ensure timely therapeutic intervention. To date, several detection methods based on nucleic acid amplification have been developed for the rapid and accurate detection of SARS-CoV-2. Despite the myriad of advancements in the detection methods for SARS-CoV-2, rapid sample preparation methods for RNA extraction from viruses have rarely been explored. Here, we report a rapid COVID-19 molecular diagnostic system that combines a self-powered sample preparation assay and loop-mediated isothermal amplification (LAMP) based naked-eye detection method for the rapid and sensitive detection of SARS-CoV-2. The self-powered sample preparation assay with a hydrophilic polyvinylidene fluoride filter and dimethyl pimelimidate can be operated by hand, without the use of any sophisticated instrumentation, similar to the reverse transcription (RT)-LAMP-based lateral flow assay for the naked-eye detection of SARS-CoV-2. The COVID-19 molecular diagnostic system enriches the virus population, extracts and amplifies the target RNA, and detects SARS-CoV-2 within 60 min. We validated the accuracy of the system by using 23 clinical nasopharyngeal specimens. We envision that this proposed system will enable simple, facile, efficient, and inexpensive diagnosis of COVID-19 at home and the clinic as a pre-screening platform to reduce the burden on the medical staff in this pandemic era.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
13.
ACS Appl Mater Interfaces ; 13(34): 40401-40414, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34405670

ABSTRACT

Resistance to antibiotics because of misuse and overuse is one of the greatest public health challenges worldwide. Despite the introduction of advanced nanotechnology in the production of antibiotics, the choice of appropriate medicines is limited due to side effects such as blood coagulation, toxicity, low efficacy, and low biocompatibility; therefore, novel nanomaterial composites are required to counter these repercussions. We first introduce a facile method for synthesizing a homobifunctional imidoester-coated nanospindle (HINS) zinc oxide composite for enhancement of antibiotic efficacy and reduction of toxicity and blood coagulation. The antibiotic efficacy of the composites is twice that of commercialized zinc nanoparticles; in addition, they have good biocompatibility, have increased surface charge and solubility owing to the covalent acylation groups of HI, and produce a large number of Zn+ ions and defensive reactive oxygen species (ROS) that effectively kill bacteria and fungi. The synergistic effect of a combination therapy with the HINS composite and itraconazole shows more than 90% destruction of fungi in treatments with low dosage with no cytotoxicity or coagulation evident in intravenous administration in in vitro and in vivo experiments. Thus, HINS composites are useful in reducing the effect of misuse and overuse of antibiotics in the medical field.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Imidoesters/pharmacology , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Aspergillus fumigatus/drug effects , Drug Synergism , Escherichia coli/drug effects , Imidoesters/chemistry , Imidoesters/toxicity , Itraconazole/pharmacology , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Nanocomposites/toxicity , Salmonella/drug effects , Zinc Oxide/chemistry , Zinc Oxide/toxicity
14.
Sci Rep ; 11(1): 7008, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772084

ABSTRACT

Dietary fiber functions as a prebiotic to determine the gut microbe composition. The gut microbiota influences the metabolic functions and immune responses in human health. The gut microbiota and metabolites produced by various dietary components not only modulate immunity but also impact various organs. Although recent findings have suggested that microbial dysbiosis is associated with several respiratory diseases, including asthma, cystic fibrosis, and allergy, the role of microbiota and metabolites produced by dietary nutrients with respect to pulmonary disease remains unclear. Therefore, we explored whether the gut microbiota and metabolites produced by dietary fiber components could influence a cigarette smoking (CS)-exposed emphysema model. In this study, it was demonstrated that a high-fiber diet including non-fermentable cellulose and fermentable pectin attenuated the pathological changes associated with emphysema progression and the inflammatory response in CS-exposed emphysema mice. Moreover, we observed that different types of dietary fiber could modulate the diversity of gut microbiota and differentially impacted anabolism including the generation of short-chain fatty acids, bile acids, and sphingolipids. Overall, the results of this study indicate that high-fiber diets play a beneficial role in the gut microbiota-metabolite modulation and substantially affect CS-exposed emphysema mice. Furthermore, this study suggests the therapeutic potential of gut microbiota and metabolites from a high-fiber diet in emphysema via local and systemic inflammation inhibition, which may be useful in the development of a new COPD treatment plan.


Subject(s)
Dietary Fiber/pharmacology , Emphysema/diet therapy , Emphysema/prevention & control , Gastrointestinal Microbiome/physiology , Prebiotics/administration & dosage , Animals , Bile Acids and Salts/biosynthesis , Cellulose/pharmacology , Cigarette Smoking/adverse effects , Diet , Dysbiosis/prevention & control , Fatty Acids, Volatile/biosynthesis , Female , Inflammation/diet therapy , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Pectins/pharmacology , Sphingolipids/biosynthesis
15.
Micromachines (Basel) ; 11(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872601

ABSTRACT

The spin-column system for the isolation of nucleic acids (NAs) from multiple samples presents the inconvenience of repeated experimentation, time-consumption, and the risk of contamination in the process of the spin-column exchange. Herein, we propose a convenient and universal assay that can be used to diagnose multiple pathogens using a multi-sample preparation assay. The multi-sample preparation assay combines a 96-well filter/membrane plate, a bio-micromaterial lattice-like micro amine-functional diatomaceous earth (D-APDMS), and homobifunctional imidoesters (HI) for the processing of pathogen enrichment and extraction for multiple samples simultaneously. The purity and quantity of the extracted NAs from pathogens (E. coli and Brucella) using the proposed assay is superior to that of the commercialized spin-column kit. The assay also does not require the replacement of several collection tubes during the reaction processing. For the multi-sample testing, we used as many as six samples simultaneously with the proposed assay. This assay can simultaneously separate up to 96 NAs from one plate, and the use of multichannel pipettes allows faster and simpler experimentation. Therefore, we believe it is a convenient and easy process, and can be easily integrated with other detection methods for clinical diagnostics.

16.
Sci Rep ; 10(1): 15592, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973156

ABSTRACT

The early diagnosis and monitoring of cancers are key factors in effective cancer treatment. Particularly, the separation of biomolecules is an essential step for both diagnostic and analytical purposes. However, the current techniques used to isolate biomolecules are intensive, laborious, and require multiple instruments as well as repeated sample preparations to separate each biomolecule. Thus, an efficient separation system that can simultaneously separate biomolecules from scarce samples is highly desirable. Hence, in this study, we developed a biosilica-based syringe filtration system for the efficient separation of biomolecules from cancer samples using amine-modified diatomaceous earth (AD) with dimethyl 3,3'-dithiobispropionimidate (DTBP). The syringe filter can be an efficient and rapid tool for use in various procedures without complex instruments. The DTBP-based AD system was combined with the syringe filter system for nucleic acid and protein separation from various cancer cells. We demonstrated the efficacy of the DTBP-based AD in a single-filter system for the efficient separation of DNA and proteins within 40 min. This DTBP-based AD syringe filter system showed good rapidity, efficiency, and affordability in the separation of biomolecules from single samples for the early diagnosis and clinical analysis of cancers.


Subject(s)
Biosensing Techniques/methods , DNA, Neoplasm/isolation & purification , Diatomaceous Earth/chemistry , Imidoesters/chemistry , Neoplasm Proteins/isolation & purification , Neoplasms/metabolism , DNA, Neoplasm/analysis , Humans , Neoplasm Proteins/analysis , Neoplasms/pathology , Tumor Cells, Cultured
17.
Exp Mol Med ; 52(7): 1128-1139, 2020 07.
Article in English | MEDLINE | ID: mdl-32681029

ABSTRACT

Recent work has suggested a microbial dysbiosis association between the lung and gut in respiratory diseases. Here, we demonstrated that gut microbiome modulation attenuated emphysema development. To modulate the gut microbiome, fecal microbiota transplantation (FMT) and diet modification were adopted in mice exposed to smoking and poly I:C for the emphysema model. We analyzed the severity of emphysema by the mean linear intercept (MLI) and apoptosis by the fluorescent TUNEL assay. Microbiome analysis was also performed in feces and fecal extracellular vesicles (EVs). The MLI was significantly increased with smoking exposure. FMT or a high-fiber diet (HFD) attenuated the increase. Weight loss, combined with smoking exposure, was not noted in mice with FMT. HFD significantly decreased macrophages and lymphocytes in bronchoalveolar lavage fluid. Furthermore, IL-6 and IFN-γ were decreased in the bronchoalveolar lavage fluid and serum. The TUNEL score was significantly lower in mice with FMT or HFD, suggesting decreased cell apoptosis. In the microbiome analysis, Bacteroidaceae and Lachnospiraceae, which are alleged to metabolize fiber into short-chain fatty acids (SCFAs), increased at the family level with FMT and HFD. FMT and HFD attenuated emphysema development via local and systemic inhibition of inflammation and changes in gut microbiota composition, which could provide a new paradigm in COPD treatment.


Subject(s)
Apoptosis , Diet, High-Fat , Emphysema/microbiology , Emphysema/therapy , Fecal Microbiota Transplantation , Feces/microbiology , Inflammation/microbiology , Administration, Oral , Animals , Emphysema/pathology , Emphysema/prevention & control , Fatty Acids/administration & dosage , Female , Mice, Inbred C57BL , Pulmonary Alveoli/pathology , Weight Loss
18.
Micromachines (Basel) ; 11(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438738

ABSTRACT

Invasive aspergillosis (IA) is an important cause of morbidity and mortality among immunocompromised people. Imaging and specimen tests used in the clinical diagnosis of aspergillosis with weak and indistinct defects leads to delay in the treatment of early aspergillosis patients. The developing molecular techniques provide a new method for the aspergillosis diagnosis. However, the existing methods are complex, time-consuming and may even be potentially hazardous. In this study, we developed a simple and rapid Aspergillus fumigatus spores DNA isolation assay using synthesized zinc oxide (ZnO). ZnO nanoparticles were used to take the place of the traditional commercial lysis buffer. The quality and quantity of the extracted DNA were sufficient for further diagnostics with polymerase chain reaction (PCR) analysis. This method offers easy, green, and economic alternative DNA isolation for the diagnosis of invasive aspergillosis.

19.
Sci Rep ; 10(1): 443, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949259

ABSTRACT

Herein, we describe the synthesis of highly water-dispersible and biocompatible 3D adsorbents via a rapid two-step strategy employing a mesoporous magnetic nanomulberry-shaped Fe3O4 (MNM) on diatomaceous earth (DE) and cucurbituril (CB; MNM-DE-CB). Coating of CB on the surface of MNM-DE via hydrogen bonds not only enhanced the dispersibility of CB, but also improved the stability of MNM-DE. The ability of the adsorbent to remove dyes from water was investigated as a function of metal ions, solution pH, temperature, and concentration to determine optimum reaction conditions. Unlike MNM-DE, MNM-DE-CB exhibited highly efficient, rapid dye removal and recyclability in aqueous solution, and low cytotoxicity toward cancer cells in drug delivery tests. MNM-DE-CB is a promising green adsorbent with potential for diverse applications including water remediation, interface catalysis, bio-sample preparation, and drug delivery.

20.
Lab Chip ; 19(13): 2256-2264, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31173022

ABSTRACT

The isolation of bio-molecules such as proteins and nucleic acids is a necessary step for both diagnostic and analytical processes in the broad fields of research and clinical applications. Although a myriad of isolation technologies have been developed, a method for simultaneous protein and nucleic acid isolation has not been explored for clinical use. Obtaining samples from certain cancers or rare diseases can be difficult. In addition, the heterogeneity of cancer tissues typically leads to inconsistent results when analyzing biomolecules. We here describe a homobifunctional imidoester (HI)-based microfluidic system for simultaneous DNA and protein isolation from either a solid or liquid single biopsy sample. An efficient and cost effective microfluidic design with less air bubbles was identified among several candidates using simulation and experimental results from the streamlining of isolation processing. HI groups were used as capture reagents for the simultaneous isolation of bio-molecules from a single specimen in a single microfluidic system. The clinical utility of this system for the simultaneous isolation of DNA and proteins within 40 min was validated in cancer cell lines and 23 tissue biopsies from colorectal cancer patients. The quantity of isolated protein and DNA was high using this system compared to the spin-column method. This HI-based microfluidic system shows good rapidity, affordability, and portability in the isolation of bio-molecules from limited samples for subsequent clinical analysis.


Subject(s)
Colorectal Neoplasms/chemistry , DNA/isolation & purification , Microfluidic Analytical Techniques , Proteins/isolation & purification , Colorectal Neoplasms/pathology , DNA/chemistry , Humans , Liquid Biopsy , Microfluidic Analytical Techniques/instrumentation , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...