Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0115624, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874410

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathways are fundamental to the regulation of biological processes in eukaryotic organisms. The basidiomycete Cryptococcus neoformans, known for causing fungal meningitis worldwide, possesses five MAPKs. Among these, Cpk1, Hog1, and Mpk1 have established roles in sexual reproduction, stress responses, and cell wall integrity. However, the roles of Cpk2 and Mpk2 are less understood. Our study elucidates the functional interplay between the Cpk1/Cpk2 and Mpk1/Mpk2 MAPK pathways in C. neoformans. We discovered that CPK2 overexpression compensates for cpk1Δ mating deficiencies via the Mat2 transcription factor, revealing functional redundancy between Cpk1 and Cpk2. We also found that Mpk2 is phosphorylated in response to cell wall stress, a process regulated by the MAPK kinase (MAP2K) Mkk2 and MAP2K kinases (MAP3Ks) Ssk2 and Ste11. Overexpression of MPK2 partially restores cell wall integrity in mpk1Δ by influencing key cell wall components, such as chitin and the polysaccharide capsule. Contrarily, MPK2 overexpression cannot restore thermotolerance and cell membrane integrity in mpk1Δ. These results suggest that Mpk1 and Mpk2 have redundant and opposing roles in the cellular response to cell wall and membrane stresses. Most notably, the dual deletion of MPK1 and MPK2 restores wild-type mating efficiency in cpk1Δ mutants via upregulation of the mating-regulating transcription factors MAT2 and ZNF2, suggesting that the Mpk1 and Mpk2 cooperate to negatively regulate the pheromone-responsive Cpk1 MAPK pathway. Our research collectively underscores a sophisticated regulatory network of cryptococcal MAPK signaling pathways that intricately govern sexual reproduction and cell wall integrity, thereby controlling fungal development and pathogenicity.IMPORTANCEIn the realm of fungal biology, our study on Cryptococcus neoformans offers pivotal insights into the roles of specific proteins called mitogen-activated protein kinases (MAPKs). Here, we discovered the cryptic functions of Cpk2 and Mpk2, two MAPKs previously overshadowed by their dominant counterparts Cpk1 and Mpk1, respectively. Our findings reveal that these "underdog" proteins are not just backup players; they play crucial roles in vital processes like mating and cell wall maintenance in C. neoformans. Their ability to step in and compensate when their dominant counterparts are absent showcases the adaptability of C. neoformans. This newfound understanding not only enriches our knowledge of fungal MAPK mechanisms but also underscores the intricate balance and interplay of proteins in ensuring the organism's survival and adaptability.

2.
Microbiol Spectr ; 11(3): e0068523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036370

ABSTRACT

Blocking of nutrient uptake and amino acid biosynthesis are considered potential targets for next-generation antifungal drugs against pathogenic fungi, including Cryptococcus neoformans. In this regard, the sulfate assimilation pathway is particularly attractive, as it is only present in eukaryotes such as plants and fungi, yet not in mammals. Here, we demonstrated that the adenylyl sulfate kinase (Met14) in the sulfate assimilation pathway is not essential yet is required for the viability of C. neoformans due to its involvement in biosynthesis of two sulfur-containing amino acids, cysteine and methionine. Met14-dependent cysteine and methionine biosynthesis was found to significantly contribute to a diverse range of pathobiological processes in C. neoformans. Met14-dependent cysteine rather than methionine biosynthesis was also found to play pivotal roles in cell growth and tolerance to environmental stresses and antifungal drugs. In contrast, the Met14-dependent methionine biosynthesis was found to be more important than cysteine biosynthesis for the production of major cryptococcal virulence factors of melanin pigments and polysaccharide capsules. Finally, we also found that despite its attenuated virulence in an insect model, Galleria mellonella, the met14Δ mutant yielded no difference in virulence in a murine model of systemic cryptococcosis. Hence, clinical inhibition of Met14-dependent amino acid biosynthetic pathways may not be advantageous for the treatment of systemic cryptococcosis. IMPORTANCE Current antifungal drugs have several limitations, such as drug resistance, severe side effects, and a narrow spectrum. Therefore, novel antifungal targets are urgently needed. To this end, fungal sulfur amino acid biosynthetic pathways are considered potential targets for development of new antifungal agents. Here, we demonstrated that Met14 in the sulfate assimilation pathway promotes growth, stress response, and virulence factor production in C. neoformans via synthesis of sulfur-containing amino acids methionine and cysteine. Met14-dependent cysteine rather than methionine synthesis was found to be critical for growth and stress responses, whereas Met14-dependent methionine synthesis was more important for the production of antiphagocytic capsules and antioxidant melanin in C. neoformans. Surprisingly, deletion of the MET14 gene was found to attenuate cryptococcal virulence in an insect model, yet not in a murine model. Collectively, our results showed that Met14-dependent cysteine and methionine biosynthesis play roles that are distinct from each other in C. neoformans. Moreover, Met14 is unlikely to be a suitable anticryptococcal drug target.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Animals , Mice , Cryptococcus neoformans/genetics , Cysteine/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Disease Models, Animal , Melanins/metabolism , Melanins/pharmacology , Capsules/metabolism , Capsules/pharmacology , Cryptococcosis/microbiology , Virulence Factors/metabolism , Methionine/metabolism , Methionine/pharmacology , Sulfur/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Mammals
3.
mBio ; 13(6): e0211222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36409123

ABSTRACT

The human-pathogenic yeast Cryptococcus neoformans assembles two types of O-linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans CAP6 gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor O-glycans containing xylose in the Golgi apparatus. Two cell surface sensor proteins, Wml1 (WSC/Mid2-like) and Wml2, were found to be independent substrates of Cap6-mediated minor or Ktr3-mediated major O-mannosylation, respectively. The double deletion of KTR3 and CAP6 (ktr3Δ cap6Δ) completely blocked the mannose addition at the second position of O-glycans, resulting in the accumulation of proteins with O-glycans carrying only a single mannose. Tunicamycin (TM)-induced phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) was greatly decreased in both ktr3Δ cap6Δ and wml1Δ wml2Δ strains. Transcriptome profiling of the ktr3Δ cap6Δ strain upon TM treatment revealed decreased expression of genes involved in the Mpk1-dependent cell wall integrity (CWI) pathway. Consistent with its defective growth under several stress conditions, the ktr3Δ cap6Δ strain was avirulent in a mouse model of cryptococcosis. Associated with this virulence defect, the ktr3Δ cap6Δ strain showed decreased adhesion to lung epithelial cells, decreased proliferation within macrophages, and reduced transcytosis of the blood-brain barrier (BBB). Notably, the ktr3Δ cap6Δ strain showed reduced induction of the host immune response and defective trafficking of ergosterol, an immunoreactive fungal molecule. In conclusion, O-glycan extension in the Golgi apparatus plays critical roles in various pathobiological processes, such as CWI signaling and stress resistance and interaction with host cells in C. neoformans. IMPORTANCE Cryptococcus neoformans assembles two types of O-linked glycans on its surface proteins, the more abundant major O-glycans that do not contain xylose residues and minor O-glycans containing xylose. Here, we demonstrate the role of the Cap6 α1,3-mannosyltransferase in the synthesis of minor O-glycans. Previously proposed to be involved in capsule biosynthesis, Cap6 works with the related Ktr3 α1,2-mannosyltransferase to synthesize O-glycans on their target proteins. We also identified two novel C. neoformans stress sensors that require Ktr3- and Cap6-mediated posttranslational modification for full function. Accordingly, the ktr3Δ cap6Δ double O-glycan mutant strain displays defects in stress signaling pathways, CWI, and ergosterol trafficking. Furthermore, the ktr3Δ cap6Δ strain is completely avirulent in a mouse infection model. Together, these results demonstrate critical roles for O-glycosylation in fungal pathogenesis. As there are no human homologs for Cap6 or Ktr3, these fungus-specific mannosyltransferases are novel targets for antifungal therapy.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Animals , Mice , Humans , Cryptococcus neoformans/genetics , Glycosylation , Mannosyltransferases/metabolism , Xylose/metabolism , Mannose , Cryptococcosis/microbiology , Polysaccharides/metabolism , Cell Wall/metabolism , Golgi Apparatus/metabolism , Fungal Proteins/genetics
4.
Nat Commun ; 11(1): 4212, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839469

ABSTRACT

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Subject(s)
Cryptococcus neoformans/genetics , Fungal Proteins/genetics , Gene Expression Profiling/methods , Genome, Fungal/genetics , Genome-Wide Association Study/methods , Phosphoric Monoester Hydrolases/genetics , Animals , Cluster Analysis , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Female , Fungal Proteins/classification , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Mice, Inbred Strains , Phosphoric Monoester Hydrolases/classification , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases/classification , Phosphotransferases/genetics , Phosphotransferases/metabolism , Signal Transduction/genetics , Thermotolerance/genetics , Transcription Factors/classification , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...