Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 30(6): 1223-1227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703023

ABSTRACT

Highly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.4b were simultaneously introduced into South Korea at the end of 2023. An outbreak at a broiler duck farm consisted of concurrent infection by both viruses. Sharing genetic information and international surveillance of such viruses in wild birds and poultry is critical.


Subject(s)
Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Influenza in Birds/virology , Influenza in Birds/epidemiology , Republic of Korea/epidemiology , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Ducks/virology , Influenza A virus/genetics , Influenza A virus/classification , Coinfection/virology , Coinfection/epidemiology , History, 21st Century , Poultry Diseases/virology , Poultry Diseases/epidemiology
2.
Vaccines (Basel) ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675818

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes fatal infections, with about 36% mortality in humans, and is endemic to the Middle East. MERS-CoV uses human dipeptidyl peptidase 4 (hDPP4) as a receptor for infection. Despite continued research efforts, no licensed vaccine is available for protection against this disease in humans. Therefore, this study sought to develop an inactivated fragmented MERS-CoV vaccine grown in Vero cells in an hDPP4-transgenic mouse model. Two-dose immunisation in mice with 15, 20, or 25 µg of spike proteins of inactivated split MERS-CoV antigens induced neutralising antibodies, with titres ranging from NT 80 to 1280. In addition, all immunised mice were completely protected, with no virus detection in tissues, weight loss, or mortality. The immunised splenocytes produced more cytokines that stimulate immune response (IFN-γ and TNF-α) than those that regulate it (IL-4 and IL-10). Taken together, the inactivated fragmented MERS-CoV vaccine is effective for the protection of mice against lethal MERS-CoV. Thus, the inactivated fragmented MERS-CoV vaccine warrants further testing in other hosts.

3.
Vaccines (Basel) ; 11(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631921

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe diseases in humans. Camels act as intermediate hosts for MERS-CoV. Currently, no licensed vaccine is available for this virus. We have developed a potential candidate vaccine for MERS-CoV using the cold adaptation method. We cultivated the vaccine in Vero cells at temperatures as low as 22 °C. This live-attenuated vaccine virus showed high attenuation levels in transgenic mice with the MERS-CoV human receptor, dipeptidyl peptidase 4 (DPP4) (K18-hDPP4). The inoculated K18-hDPP4 mice exhibited no clinical signs such as death or body weight loss. Furthermore, no traces of infectious virus were observed when the tissues (nasal turbinate, brain, lung, and kidney) of the K18-hDPP4 mice infected with the cold-adapted vaccine strain were tested. A single intranasal dose of the vaccine administered to the noses of the K18-hDPP4 mice provided complete protection. We did not observe any deaths, body weight loss, or viral detection in the tissues (nasal turbinate, brain, lung, and kidney). Based on these promising results, the developed cold-adapted, attenuated MERS-CoV vaccine strain could be one of the candidates for human and animal vaccines.

4.
Front Biosci (Landmark Ed) ; 27(11): 316, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36472114

ABSTRACT

BACKGROUND: The recently emerged variants of the severe acute respiratory coronavirus 2 (SARS-CoV-2) pose a threat to public health. Understanding the pathogenicity of these variants is a salient factor in the development of effective SARS-CoV-2 therapeutics. This study aimed to compare the expression patterns of genes involved in immune responses in K18-hACE2 mice infected with the wild-type, Delta, and Omicron SARS-CoV-2 variants. METHODS: K18-hACE2 mice were intranasally infected with either wild-type (B.1), Delta (B.1.617.2), or Omicron (B.1.1.529) variants. On day 6 post-infection, lung, brain, and kidney tissues were collected from each variant-infected group. The mRNA expression levels of 39 immune response genes in all three groups were compared by RT-qPCR. Viral titers were measured using the median tissue culture infectious dose (TCID50) assay and expressed as Log10 TCID50/0.1 g. The statistical significance of the differences in gene expression was determined by one-way analysis of variance (ANOVA) (alpha = 0.05). RESULTS: The expression of toll-like receptors (TLRs) was upregulated in the lung and brain tissues of the wild-type- and Delta-infected groups but not in those of the Omicron-infected group. The highest expression of cytokines, including interleukin (IL)-1α, IL-1ß, IL-17α, interferon, and tumor necrosis factors, was observed in the lungs of mice infected with the wild-type variant. Additionally, CCL4, CCL11, CXCL9, and CXCL10 were upregulated (>3-fold) in wild-type-infected mice, with markedly higher expressions in the brain than in the lungs. Most of the apoptotic factors were mainly expressed in the brain tissues of Omicron-infected mice (caspase 8, caspase 9, p53, Bax, Bak, BCL-2, and Bcl-XL), whereas neither the lung nor kidney showed more than 3-fold upregulation of these apoptotic factors. CONCLUSIONS: Collectively, our findings revealed that the wild-type SARS-CoV-2 variant exhibited the highest pathogenicity, followed by the Delta variant, then the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , SARS-CoV-2/genetics , Mice, Transgenic , Virulence , COVID-19/genetics , Immunity
5.
Front Biosci (Landmark Ed) ; 27(9): 268, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36224020

ABSTRACT

BACKGROUND: Over the last 20 years, circulating highly pathogenic (HP) Asian H5 subtype avian influenza viruses have caused global pandemics in poultry and sporadic infections in humans. Vaccines are a desirable solution to prevent viral infections in poultry and reduce transmission to humans. Herein, we investigated the efficacy of an oil-adjuvanted inactivated H5N6 vaccine against highly pathogenic H5N6 and H5N1 influenza virus infections in chickens. METHODS: The polybasic amino acid cleavage site depleted HA gene and NA gene of A/Waterfowl/Korea/S57/2016 (clade 2.3.4.4) (H5N6) was assembled with the rest of the A/PR/8/34 (H1N1) genes to construct the vaccine virus. The vaccine virus was propagated in fertilized eggs, partially purified using a tangential flow filtration (TFF) system, and inactivated using formalin. The chickens were intramuscularly immunized with 384 HA, 192HA, and 96HA units of oil-adjuvanted inactivated H5N6 vaccine. Antibody titer, survival rate, and lung pathology were evaluated against the homologous H5N6: A/waterfowl/Korea/S57/2016 (clade 2.3.4.4) and heterologous H5N1: A/Hong Kong/213/2003 (clade 1) viruses 12 and 4 weeks post-vaccination (p.v.), respectively. Data were statistically analyzed using the Mann-Whitney U test. RESULTS: The 384HA (n = 10) and 192HA (n = 5) antigen-immunized chickens showed 100% survival after lethal infections with homologous H5N6, and no virus shedding was observed from tracheal and cloacal routes. All chickens that received the 384HA vaccine survived the challenge of heterologous H5N1 after 4 weeks of immunization. The chickens that received the 384HA vaccine showed mean HI titers of 60 and 240 after 12 and 4 weeks of vaccination, respectively, against HP H5N6, whereas a mean HI titer of 80 was observed in sera collected 4 weeks after vaccination against HP H5N1. CONCLUSIONS: Our findings indicate that one dose of 384HA oil-adjuvanted inactivated H5N6 vaccine can induce a long-lasting immune response against both homologous H5N6 and heterologous H5N1 infections in chickens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza in Birds , Influenza, Human , Adjuvants, Immunologic/pharmacology , Amino Acids , Animals , Chickens , Formaldehyde , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/genetics , Influenza in Birds/prevention & control , Vaccines, Inactivated/genetics
6.
Arch Virol ; 167(1): 67-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34693488

ABSTRACT

Highly pathogenic H5Nx avian influenza viruses constantly threaten the poultry industry and humans and have pandemic potential. These viruses continuously evolve, requiring a universal vaccine to protect chickens from members of diverse clades. The purpose of this study was to develop an H5 cleavage-site peptide vaccine containing polybasic amino acids (RRRK) to completely protect chickens from H5N6, H5N8, and H5N1 avian influenza viruses. Chickens were immunized with various doses of a keyhole limpet hemocyanin (KLH)-conjugated H5 cleavage-site peptide vaccine containing RRRK. The effect of RRRK was evaluated by comparing the survival rates of chickens immunized with vaccines either containing or lacking RRRK. The ability of the RRRK-containing vaccine to confer long-term protective immunity was also assessed. We found that protection was dependent on the number of antigens in the vaccine containing RRRK. Chickens immunized intramuscularly with two doses of 5 µg of the vaccine containing RRRK were completely protected, but those immunized with fewer than two doses of 3 or 1 µg were not protected. Chickens immunized with the vaccine lacking RRRK were not protected, suggesting the importance of the polybasic amino acids in conferring immunity. Our results suggest that conserved H5 cleavage-site peptides with polybasic amino acids may be a potential universal vaccine to protect chickens from various emerging clades of H5Nx avian influenza viruses.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza in Birds/prevention & control , Vaccines, Subunit
7.
Vaccines (Basel) ; 8(4)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33022950

ABSTRACT

A safe and effective vaccine that can provide herd immunity against severe acute respiratory syndrome coronavirus (SARS-CoV-2) is urgently needed to stop the spread of this virus among humans. Many human viral vaccines are live, attenuated forms of viruses that elicit humoral and cellular immunity. Here, we describe a cold-adapted live-attenuated vaccine (SARS-CoV-2/human/Korea/CNUHV03-CA22 °C/2020) developed by gradually adapting the growth of SARS-CoV-2 from 37 °C to 22 °C in Vero cells. This vaccine can be potentially administered to humans as a nasal spray. Its single dose strongly induced neutralising antibodies (titre > 640), cellular immunity, and mucosal IgA antibodies in intranasally immunised K18-hACE2 mice, which are very susceptible to SARS-CoV-2 and SARS-CoV infections. The one-dose vaccinated mice were completely protected from SARS-CoV-2 infection and did not show body weight loss, death, or the presence of virus in tissues, such as the nasal turbinates, brain, lungs, and kidneys. These results demonstrate that the cold-adapted live attenuated SARS-CoV-2 vaccine we have developed may be a candidate SARS-CoV-2 vaccine for humans.

8.
Arch Virol ; 165(10): 2205-2211, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32651741

ABSTRACT

Coronaviruses such as MERS-CoV and SARS-CoV-2 infect the human respiratory tract and can cause severe pneumonia. Disease severity and outcomes are different for these two infections: the human mortality rate for MERS-CoV and SARS-CoV-2 is over 30% and less than 10%, respectively. Here, using microarray assay, we analyzed the global alterations in gene expression induced by MERS-CoV or SARS-CoV-2 infections in primary human pulmonary epithelial cells. Overall, the number of differentially expressed genes was higher in human lung cells infected with MERS-CoV than in cells with SARS-CoV-2. Out of 44,556 genes analyzed, 127 and 50 were differentially expressed in cells infected with MERS-CoV and SARS-CoV-2, respectively (> 2-fold increase, compared to uninfected cells). Of these, only eight genes, including the one coding for CXCL8, were similarly modulated (upregulated or downregulated) by the two coronaviruses. Importantly, these results were virus-specific and not conditioned by differences in viral load, and viral growth curves were similar in human lung cells infected with both viruses. Our results suggest that these distinct gene expression profiles, detected early after infection by these two coronaviruses, may help us understand the differences in clinical outcomes of MERS-CoV and SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/pathogenicity , Lung/metabolism , Lung/virology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , COVID-19 , Cells, Cultured , Chemokine CXCL6/genetics , Coronavirus Infections/genetics , Coronavirus Infections/virology , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression Profiling , Host Microbial Interactions/genetics , Humans , Interleukin-8/genetics , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS-CoV-2 , Species Specificity , Up-Regulation
9.
Viruses ; 12(6)2020 05 29.
Article in English | MEDLINE | ID: mdl-32485904

ABSTRACT

Ducks show notably higher resistance to highly pathogenic avian influenza viruses as compared to chickens. Here, we studied the age-dependent susceptibility in ducks to the infections caused by highly pathogenic avian influenza viruses. We intranasally infected ducks aged 1, 2, 4, and 8 weeks with highly pathogenic H5N6 avian influenza viruses isolated in South Korea in 2016. All the 1-and 2-week-old ducks died after infection, 20% of 3-week-old ducks died, and from the ducks aged 4 and 8 weeks, all of them survived. We performed microarray analysis and quantitative real-time PCR using total RNA isolated from the lungs of infected 2- and 4-week-old ducks to determine the mechanism underlying the age-dependent susceptibility to highly pathogenic avian influenza virus. Limited genes were found to be differentially expressed between the lungs of 2- and 4-week-old ducks. Cell damage-related genes, such as CIDEA and ND2, and the immune response-related gene NR4A3 were notably induced in the lungs of infected 2-week-old ducks compared to those in the lungs of infected 4-week-old ducks.


Subject(s)
Ducks/virology , Influenza A virus/pathogenicity , Influenza in Birds/virology , Poultry Diseases/virology , Age Factors , Animals , Gene Expression , Gene Expression Regulation, Viral , Influenza in Birds/mortality , Lung/metabolism , Lung/virology , Oligonucleotide Array Sequence Analysis , Poultry Diseases/mortality , Real-Time Polymerase Chain Reaction , Viral Load
10.
Arch Virol ; 165(5): 1141-1150, 2020 May.
Article in English | MEDLINE | ID: mdl-32222822

ABSTRACT

Pigs are capable of harbouring influenza A viruses of human and avian origin in their respiratory tracts and thus act as an important intermediary host to generate novel influenza viruses with pandemic potential by genetic reassortment between the two viruses. Here, we show that two distinct H1N2 swine influenza viruses contain avian-like or classical swine-like hemagglutinins with polymerase acidic (PA) and nucleoprotein (NP) genes from 2009 pandemic H1N1 influenza viruses that were found to be circulating in Korean pigs in 2018. Swine H1N2 influenza virus containing an avian-like hemagglutinin gene had enhanced pathogenicity, causing severe interstitial pneumonia in infected pigs and mice. The mortality rate of mice infected with swine H1N2 influenza virus containing an avian-like hemagglutinin gene was higher by 100% when compared to that of mice infected with swine H1N2 influenza virus harbouring classical swine-like hemagglutinin. Further, chemokines attracting inflammatory cells were strongly induced in lung tissues of pigs and mice infected by swine H1N2 influenza virus containing an avian-like hemagglutinin gene. In conclusion, it is necessary for the well-being of humans and pigs to closely monitor swine influenza viruses containing avian-like hemagglutinin with PA and NP genes from 2009 pandemic H1N1 influenza viruses.


Subject(s)
Influenza A Virus, H1N2 Subtype/growth & development , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Virulence Factors/genetics , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/pathogenicity , Mice , Nucleocapsid Proteins , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA-Binding Proteins/genetics , Survival Analysis , Swine , Swine Diseases/pathology , Viral Core Proteins/genetics , Virulence
11.
Arch Virol ; 163(11): 3015-3022, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30066270

ABSTRACT

Histamine is a biogenic amine that influences many immune cells. In this study, we investigated the effect of histamine on the pathogenesis of 2009 pandemic H1N1 influenza virus in pigs. Histamine was not detected in the tracheal tissues of infected pigs, and no difference was found in the pathological damage found in infected pigs with and without treatment with a histamine antagonist. Lung tissues from untreated infected pigs showed severe interstitial pneumonia with accumulation of histamine, in contrast to those from infected pigs that were treated with the histamine antagonist. The expression of inflammatory cytokines was much higher in the lungs of untreated infected pigs than in infected pigs treated with the histamine antagonist. These data suggest that histamine necessary for the development of the severe pneumonia in infected pigs.


Subject(s)
Histamine/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Orthomyxoviridae Infections/veterinary , Pneumonia/veterinary , Swine Diseases/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Lung/metabolism , Lung/virology , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/virology , Swine , Swine Diseases/genetics , Swine Diseases/virology
12.
J Vet Res ; 62(4): 413-420, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30729196

ABSTRACT

INTRODUCTION: Highly pathogenic Asian H5-subtype avian influenza viruses have been found in poultry and wild birds worldwide since they were first detected in southern China in 1996. Extensive control efforts have not eradicated them. Vaccination prevents such viruses infecting poultry and reduces the number lost to compulsory slaughter. The study showed the efficacy of inactivated H5 vaccine from the H5N8 virus against highly pathogenic H5N8 and H5N6 avian influenza viruses in chickens. MATERIAL AND METHODS: Reverse genetics constructed an H5 vaccine virus using the HA gene of the 2014 H5N8 avian influenza virus and the rest of the genes from A/PR/8/34 (H1N1). The vaccine viruses were grown in fertilised eggs, partially purified through a sucrose gradient, and inactivated with formalin. Chickens were immunised i.m. with 1 µg of oil-adjuvanted inactivated H5 antigens. RESULTS: Single dose H5 vaccine recipients were completely protected from lethal infections by homologous H5N8 avian influenza virus and shed no virus from the respiratory or intestinal tracts but were not protected from lethal infections by heterologous H5N6. When chickens were immunised with two doses and challenged with homologous H5N8 or heterologous H5N6, all survived and shed no virus. CONCLUSION: Our results indicate that two-dose immunisations of chickens with H5 antigens with oil adjuvant are needed to provide broad protection against different highly pathogenic H5 avian influenza viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...