Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Exp Eye Res ; 211: 108760, 2021 10.
Article in English | MEDLINE | ID: mdl-34487726

ABSTRACT

Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.


Subject(s)
Acinar Cells/drug effects , Adrenergic alpha-1 Receptor Agonists/pharmacology , Cathepsins/metabolism , Lacrimal Apparatus/drug effects , Phenylephrine/pharmacology , Secretory Pathway/drug effects , Tears/metabolism , Acinar Cells/metabolism , Animals , Blotting, Western , Calcium/metabolism , Carbachol/pharmacology , Cells, Cultured , Cholinergic Agonists/pharmacology , Disease Models, Animal , Female , Gene Silencing , Lacrimal Apparatus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , beta-N-Acetylhexosaminidases/metabolism , rab3 GTP-Binding Proteins/genetics
2.
Biomacromolecules ; 22(3): 1102-1114, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33356170

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disease associated with severe exocrinopathy, which is characterized by profound lymphocytic infiltration (dacryoadenitis) and loss of function of the tear-producing lacrimal glands (LGs). Systemic administration of Rapamycin (Rapa) significantly reduces LG inflammation in the male Nonobese Diabetic (NOD) model of SS-associated autoimmune dacryoadenitis. However, the systemic toxicity of this potent immunosuppressant limits its application. As an alternative, this paper reports an intra-LG delivery method using a depot formulation comprised of a thermoresponsive elastin-like polypeptide (ELP) and FKBP, the cognate receptor for Rapa (5FV). Depot formation was confirmed in excised whole LG using cleared tissue and observation by both laser-scanning confocal and lightsheet microscopy. The LG depot was evaluated for safety, efficacy, and intra-LG pharmacokinetics in the NOD mouse disease model. Intra-LG injection with the depot formulation (5FV) retained Rapa in the LG for a mean residence time (MRT) of 75.6 h compared to Rapa delivery complexed with a soluble carrier control (5FA), which had a MRT of 11.7 h in the LG. Compared to systemic delivery of Rapa every other day for 2 weeks (seven doses), a single intra-LG depot of Rapa representing 16-fold less total drug was sufficient to inhibit LG inflammation and improve tear production. This treatment modality further reduced markers of hyperglycemia and hyperlipidemia while showing no evidence of necrosis or fibrosis in the LG. This approach represents a potential new therapy for SS-related autoimmune dacryoadenitis, which may be adapted for local delivery at other sites of inflammation; furthermore, these findings reveal the utility of optical imaging for monitoring the disposition of locally administered therapeutics.


Subject(s)
Dacryocystitis , Lacrimal Apparatus , Sjogren's Syndrome , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred NOD , Sirolimus , Tears
3.
Front Immunol ; 11: 1475, 2020.
Article in English | MEDLINE | ID: mdl-32849505

ABSTRACT

Sjögren's Syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and loss of function of moisture-producing exocrine glands as well as systemic inflammation. SS diagnosis is cumbersome, subjective and complicated by manifestation of symptoms that overlap with those of other rheumatic and ocular diseases. Definitive diagnosis averages 4-5 years and this delay may lead to irreversible tissue damage. Thus, there is an urgent need for diagnostic biomarkers for earlier detection of SS. Extracellular vesicles called exosomes carry functional small non-coding RNAs which play a critical role in maintaining cellular homeostasis via transcriptional and translational regulation of mRNA. Alterations in levels of specific exosomal miRNAs may be predictive of disease status. Here, we have assessed serum exosomal RNA using next generation sequencing in a discovery cohort of the NOD mouse, a model of early-intermediate SS, to identify dysregulated miRNAs that may be indicative of SS. We found five miRNAs upregulated in serum exosomes of NOD mice with an adjusted p < 0.05-miRNA-127-3p, miRNA-409-3p, miRNA-410-3p, miRNA-541-5p, and miRNA-540-5p. miRNAs 127-3p and 541-5p were also statistically significantly upregulated in a validation cohort of NOD mice. Pathway analysis and existing literature indicates that differential expression of these miRNAs may dysregulate pathways involved in inflammation. Future studies will apply these findings in a human cohort to understand how they are correlated with manifestations of SS as well as understanding their functional role in systemic autoimmunity specific to SS.


Subject(s)
Biomarkers/metabolism , Circulating MicroRNA/genetics , Exosomes/genetics , Genetic Markers/genetics , Sjogren's Syndrome/diagnosis , Animals , Disease Models, Animal , Exosomes/metabolism , High-Throughput Nucleotide Sequencing , Humans , Inflammation/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Transcriptome
4.
Transl Vis Sci Technol ; 9(8): 23, 2020 07.
Article in English | MEDLINE | ID: mdl-32855870

ABSTRACT

Purpose: To evaluate the effects of vascular endothelial growth factor-A (VEGF-A) gene editing in human retinal pigment epithelial (RPE) cells and human Muller cells, which are the main VEGF-A producing cells in the eye. Methods: CRISPR-Cas9 ribonucleoprotein was used to target exon 1 in VEGF-A gene. Lipofectamine CRISPRMAX was used as a vehicle. In vitro gene editing efficiency was assessed on oligonucleotides and genomic DNAs. Sanger sequencing was performed to detect indels. VEGF-A messenger RNA and protein expressions were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Results: In vitro cleavage assay on a 60-nucleotide DNA duplex showed 88% cleavage of the precursor. The cleavage efficiency was 40% in RPE cells and 32% in Muller cells. Sanger sequencing in the CRISPR-Cas9 treated RPE and Muller cells showed indels at the predicted cut site in both cells. After the VEGF-A gene disruption, VEGF-A protein levels decreased 43% in RPE cells (P < 0.0001) and 38% in Muller cells (P < 0.0001). Conclusions: CRISPR-Cas9-mediated gene disruption resulted in a significant decrease in the VEGF-A gene protein expression in human RPE and Muller cells. CRISPR-Cas9 ribonucleoprotein may allow simultaneous targeting of multiple VEGF-A producing cells. Translational Relevance: VEGF-A gene disruption using CRISPR-Cas9 ribonucleoprotein has a potential in treating retinal vascular diseases.


Subject(s)
CRISPR-Cas Systems , Vascular Endothelial Growth Factor A , CRISPR-Cas Systems/genetics , Ependymoglial Cells/metabolism , Epithelial Cells/metabolism , Humans , Retinal Pigments , Ribonucleoproteins/genetics , Vascular Endothelial Growth Factor A/genetics
5.
Biomark Med ; 14(2): 151-163, 2020 02.
Article in English | MEDLINE | ID: mdl-32064896

ABSTRACT

Tears are a known source of biomarkers for both ocular and systemic diseases with particular advantages; specifically, the noninvasiveness of sample collection and a unique and increasingly better-defined protein composition. Here, we discuss our rationale for use of tears for discovery of biomarkers for Parkinson's disease (PD). These reasons include literature supporting changes in tear flow and composition in PD, and the interconnections between the ocular surface system and neurons affected in PD. We highlight recent data on the identification of tear biomarkers including oligomeric α-synuclein, associated with neuronal degeneration in PD, in tears of PD patients and discuss possible sources for its release into tears. Challenges and next steps for advancing such biomarkers to clinical usage are highlighted.


Subject(s)
Biomarkers/metabolism , Parkinson Disease/metabolism , Tears/metabolism , alpha-Synuclein/metabolism , Humans , Lacrimal Apparatus/metabolism , Neurons/metabolism , Parkinson Disease/diagnosis , Protein Multimerization , Protein Transport , Sensitivity and Specificity , alpha-Synuclein/chemistry
6.
Sci Rep ; 10(1): 1455, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31996771

ABSTRACT

Autoimmune dacryoadenitis and altered lacrimal gland (LG) secretion are features of Sjögren's syndrome (SS). Activity of cathepsin S (CTSS), a cysteine protease, is significantly and specifically increased in SS patient tears. The soluble chemokine, CX3CL1 (fractalkine), is cleaved from membrane-bound CX3CL1 by proteases including CTSS. We show that CX3CL1 is significantly elevated by 2.5-fold in tears (p = 0.0116) and 1.4-fold in LG acinar cells (LGAC)(p = 0.0026) from male NOD mice, a model of autoimmune dacryoadenitis in SS, relative to BALB/c controls. Primary mouse LGAC and human corneal epithelial cells (HCE-T cells) exposed to interferon-gamma, a cytokine elevated in SS, showed up to 9.6-fold (p ≤ 0.0001) and 25-fold (p ≤ 0.0001) increases in CX3CL1 gene expression, and 1.9-fold (p = 0.0005) and 196-fold (p ≤ 0.0001) increases in CX3CL1 protein expression, respectively. Moreover, exposure of HCE-T cells to recombinant human CTSS at activity equivalent to that in SS patient tears increased cellular CX3CL1 gene and protein expression by 2.8-fold (p = 0.0021) and 5.1-fold (p ≤ 0.0001), while increasing CX3CL1 in culture medium by 5.8-fold (p ≤ 0.0001). Flow cytometry demonstrated a 4.5-fold increase in CX3CR1-expressing immune cells (p ≤ 0.0001), including increased T-cells and macrophages, in LG from NOD mice relative to BALB/c. CTSS-mediated induction/cleavage of CX3CL1 may contribute to ocular surface and LG inflammation in SS.


Subject(s)
Cathepsins/metabolism , Chemokine CX3CL1/metabolism , Epithelium, Corneal/metabolism , Lacrimal Apparatus/immunology , Sjogren's Syndrome/immunology , T-Lymphocytes/immunology , Tears/metabolism , Animals , Cells, Cultured , Chemokine CX3CL1/genetics , Dacryocystitis , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Up-Regulation
7.
Biomark Med ; 13(17): 1447-1457, 2019 12.
Article in English | MEDLINE | ID: mdl-31552762

ABSTRACT

Aim: Due to active engagement of sensory and afferent nerve fibers in reflex tearing which could be affected in Parkinson's disease (PD), we tested reflex tears as a source of potential PD biomarkers. Patients & methods: Reflex tears collected from 84 PD and 84 age- and sex-equivalent healthy controls (HC) were used to measure levels of oligomeric α-Syn (α-SynOligo), total α-Syn (α-SynTotal), CCL2, DJ-1, lactoferrin and MMP9. Results: α-synOligo (p < 0.0001), CCL2 (p = 0.003) and lactoferrin (p = 0.002) were significantly elevated in PD patient tears relative to HC tears. Tear flow was significantly lower in PD relative to HC (p = 0.001). Conclusion: Reflex tears are a potential source for detection of characteristic changes in PD patients.


Subject(s)
Biomarkers/analysis , Parkinson Disease/diagnosis , Tears/chemistry , alpha-Synuclein/chemistry , Aged , Biomarkers/metabolism , Case-Control Studies , Chemokine CCL2/analysis , Chemokine CCL2/metabolism , Female , Humans , Lactoferrin/analysis , Lactoferrin/metabolism , Male , Middle Aged , Parkinson Disease/metabolism , Tears/metabolism
8.
Bioconjug Chem ; 30(9): 2358-2372, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31408605

ABSTRACT

Elastin-Like Polypeptides (ELP) are environmentally responsive protein polymers which are easy to engineer and biocompatible, making them ideal candidates as drug carriers. Our team has recently utilized ELPs fused to FKBP12 to carry Rapamycin (Rapa), a potent immunosuppressant. Through high affinity binding to Rapa, FKBP carriers can yield beneficial therapeutic effects and reduce the off-site toxicity of Rapa. Since ICAM-1 is significantly elevated at sites of inflammation in diverse diseases, we hypothesized that a molecularly targeted ELP carrier capable of binding ICAM-1 might have advantageous properties. Here we report on the design, characterization, pharmacokinetics, and biodistribution of a new ICAM-1-targeted ELP Rapa carrier (IBPAF) and its preliminary characterization in a murine model exhibiting elevated ICAM-1. Lacrimal glands (LG) of male NOD mice, a disease model recapitulating the autoimmune dacryoadenitis seen in Sjögren's Syndrome patients, were analyzed to confirm that ICAM-1 was significantly elevated in the LG relative to control male BALB/c mice (3.5-fold, p < 0.05, n = 6). In vitro studies showed that IBPAF had significantly higher binding to TNF-α-stimulated bEnd.3 cells which overexpress surface ICAM-1, relative to nontargeted control ELP (AF)(4.0-fold, p < 0.05). A pharmacokinetics study in male NOD mice showed no significant differences between AF and IBPAF for plasma half-life, clearance, and volume of distribution. However, both constructs maintained a higher level of Rapa in systemic circulation compared to free Rapa. Interestingly, in the male NOD mouse, the accumulation of IBPAF was significantly higher in homogenized LG extracts compared to AF at 2 h (8.6 ± 6.6% versus 1.3 ± 1.3%, respectively, n = 5, p < 0.05). This accumulation was transient with no differences detected at 8 or 24 h. This study describes the first ICAM-1 targeted protein-polymer carrier for Rapa that specifically binds to ICAM-1 in vitro and accumulates in ICAM-1 overexpressing tissue in vivo, which may be useful for molecular targeting in diverse inflammatory diseases where ICAM-1 is elevated.


Subject(s)
Elastin/chemistry , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacology , Molecular Targeted Therapy , Peptides/chemistry , Peptides/pharmacology , Amino Acid Sequence , Animals , Immunosuppressive Agents/metabolism , Immunosuppressive Agents/pharmacokinetics , Intercellular Adhesion Molecule-1/metabolism , Male , Mice , Peptides/metabolism , Peptides/pharmacokinetics , Protein Transport , Sirolimus/chemistry , Tissue Distribution , Tumor Necrosis Factor-alpha/pharmacology
9.
Sci Rep ; 9(1): 9559, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31267034

ABSTRACT

Cathepsin S (CTSS) is highly increased in Sjögren's syndrome (SS) patients tears and in tears and lacrimal glands (LG) of male non-obese diabetic (NOD) mice, a murine model of SS. To explore CTSS's utility as a therapeutic target for mitigating ocular manifestations of SS in sites where CTSS is increased in disease, the tears and the LG (systemically), the peptide-based inhibitor, Z-FL-COCHO (Z-FL), was administered to 14-15 week male NOD mice. Systemic intraperitoneal (i.p.) injection for 2 weeks significantly reduced CTSS activity in tears, LG and spleen, significantly reduced total lymphocytic infiltration into LG, reduced CD3+ and CD68+ cell abundance within lymphocytic infiltrates, and significantly increased stimulated tear secretion. Topical administration of Z-FL to a different cohort of 14-15 week male NOD mice for 6 weeks significantly reduced only tear CTSS while not affecting LG and spleen CTSS and attenuated the disease-progression related reduction of basal tear secretion, while not significantly impacting lymphocytic infiltration of the LG. These findings suggest that CTSS inhibitors administered either topically or systemically can mitigate aspects of the ocular manifestations of SS.


Subject(s)
Cathepsins/antagonists & inhibitors , Dacryocystitis/metabolism , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/metabolism , Protease Inhibitors/pharmacology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Tears/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Autoimmunity , Dacryocystitis/etiology , Dacryocystitis/pathology , Disease Models, Animal , Gene Expression , H-2 Antigens/genetics , H-2 Antigens/immunology , Humans , Lacrimal Apparatus/pathology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Mice , Protease Inhibitors/administration & dosage , Protease Inhibitors/adverse effects , Protease Inhibitors/chemistry , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/etiology
10.
Biomark Med ; 13(11): 941-952, 2019 08.
Article in English | MEDLINE | ID: mdl-31262201

ABSTRACT

Aim: Secretion of proteins into basal tears of Parkinson's disease (PD) patients may be altered by changes in nerve function. Materials & methods: Oligomeric α-SynOligo and total α-SynTotal, CCL-2, DJ-1, LF and MMP-9 were measured in basal tears from 93 PD patients and 82 age- and sex-equivalent healthy controls. Results: α-SynTotal was decreased (p = 0.0043), whereas α-SynOligo (p < 0.0001) and the ratio of α-SynOligo/α-SynTotal (p < 0.0001) were increased in basal tears from PD patients compared with healthy controls. Area under receiver-operating curves of α-SynOligo and α-SynOligo/α-SynTotal contents were 0.70 (95% confidence limits: 0.621-0.774) and 0.72 (95% confidence limits: 0.642-0.792). Conclusion: PD patient basal tears may contain biomarkers that can be assayed noninvasively and inexpensively.


Subject(s)
Biomarkers/analysis , Parkinson Disease/metabolism , Tears/chemistry , alpha-Synuclein/metabolism , Aged , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Male , Middle Aged , Tears/metabolism , alpha-Synuclein/analysis
11.
Mol Pharm ; 16(7): 3024-3039, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31095909

ABSTRACT

The USFDA-approved immunosuppressive drug rapamycin (Rapa), despite its potency, is limited by poor bioavailability and a narrow therapeutic index. In this study, we sought to improve bioavailability of Rapa with subcutaneous (SC) administration and to test its therapeutic feasibility and practicality in a murine model of Sjögren's syndrome (SS), a systemic autoimmune disease with no approved therapies. To improve its therapeutic index, we formulated Rapa with a carrier termed FAF, a fusion of the human cytosolic FK506-binding protein 12 (FKBP12) and an elastin-like polypeptide (ELP). The resulting 97 kDa FAF (i) has minimal burst release, (ii) is "humanized", (iii) is biodegradable, (iv) solubilizes two Rapa per FAF, and (v) avoids organic solvents or amphiphilic carriers. Demonstrating high stability, FAF remained soluble and monodisperse with a hydrodynamic radius of 8 nm at physiological temperature. A complete pharmacokinetic (PK) analysis of FAF revealed that the bioavailability of SC FAF was 60%, with significantly higher blood concentration during the elimination phase compared to IV FAF. The plasma concentration of Rapa delivered by FAF was 8-fold higher with a significantly increased plasma-to-whole blood ratio relative to free Rapa, 24 h after injection. To evaluate therapeutic effects, FAF-Rapa was administered SC every other day for 2 weeks to male non-obese diabetic (NOD) mice, which develop an SS-like autoimmune-mediated lacrimal gland (LG) inflammation and other characteristic features of SS. Both FAF-Rapa and free Rapa exhibited immunomodulatory effects by significantly suppressing lymphocytic infiltration, gene expression of IFN-γ, MHC II, type I collagen and IL-12a, and cathepsin S (CTSS) activity in LG compared to controls. Serum chemistry and histopathological analyses in major organs revealed no apparent toxicity of FAF-Rapa. Given its improved PK and equipotent therapeutic efficacy compared to free Rapa, FAF-Rapa is of further interest for systemic treatments for autoimmune diseases like SS.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Peptides/chemistry , Sirolimus/administration & dosage , Sirolimus/therapeutic use , Sjogren's Syndrome/drug therapy , Animals , Cathepsins/analysis , Disease Models, Animal , Drug Carriers/pharmacokinetics , Drug Liberation , Drug Stability , Elastin/chemistry , Immunosuppressive Agents/blood , Immunosuppressive Agents/chemistry , Injections, Subcutaneous , Male , Mice , Mice, Inbred NOD , Sirolimus/blood , Sirolimus/chemistry , Sjogren's Syndrome/blood , Tacrolimus Binding Protein 1A/chemistry
13.
Biomarkers ; 24(1): 91-102, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30126300

ABSTRACT

CONTEXT: Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. OBJECTIVE: To evaluate longitudinal expression of tear and tissue CTSS activity relative to other disease indicators in Non-Obese Diabetic (NOD) mice. METHODS: CTSS activity was measured in tears and lacrimal glands (LG) from male 1-6 month (M) NOD and 1 and 6 M BALB/c mice. Lymphocytic infiltration was quantified by histopathology, while disease-related proteins (Rab3D, CTSS, collagen 1) were quantified using q-PCR and immunofluorescence. RESULTS: In NOD LG, lymphocytic infiltration was noted by 2 M and established by 3 M (p < 0.01). IFN-É£, TNF-α, and MHC II expression were increased by 2 M (p < 0.01). Tear CTSS activity was significantly elevated at 2 M (p < 0.001) to a maximum of 10.1-fold by 6 M (p < 0.001). CTSS activity in LG lysates was significantly elevated by 2 M (p < 0.001) to a maximum of 14-fold by 3 M (p < 0.001). CTSS and Rab3D immunofluorescence were significantly increased and decreased maximally in LG acini by 3 M and 2 M, respectively. Comparable changes were not detected between 1 and 6 M BALB/c mouse LG, although Collagen 1 was decreased by 6 M in LG of both strains. CONCLUSION: Tear CTSS activity is elevated with other early disease indicators, suggesting potential as an early stage biomarker for SS.


Subject(s)
Cathepsins/analysis , Sjogren's Syndrome/diagnosis , Tears/chemistry , Animals , Biomarkers/analysis , Early Diagnosis , Lacrimal Apparatus/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD
14.
Int J Mol Sci ; 19(11)2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30423938

ABSTRACT

Cathepsin S (CTSS) activity is increased in tears of Sjögren's syndrome (SS) patients. This elevated CTSS may contribute to ocular surface inflammation. Human corneal epithelial cells (HCE-T cells) were treated with recombinant human CTSS at activity comparable to that in SS patient tears for 2, 4, 8, and 24 h. Acute CTSS significantly increased HCE-T cell gene and protein expression of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) from 2 to 4 h, while matrix metalloproteinase 9 (MMP-9), CTSS, and protease-activated receptor-2 (PAR-2) were increased by chronic CTSS (24 h). To investigate whether the increased pro-inflammatory cytokines and proteases were induced by CTSS activation of PAR-2, HCE-T cells were transfected with PAR-2 siRNA, reducing cellular PAR-2 by 45%. Cells with reduced PAR-2 expression showed significantly reduced release of IL-6, TNF-α, IL-1ß, and MMP-9 into culture medium in response to acute CTSS, while IL-6, TNF-α, and MMP-9 were reduced in culture medium, and IL-6 and MMP-9 in cell lysates, after chronic CTSS. Moreover, cells with reduced PAR-2 expression showed reduced ability of chronic CTSS to induce gene expression of pro-inflammatory cytokines and proteases. CTSS activation of PAR-2 may represent a potential therapeutic target for amelioration of ocular surface inflammation in SS patients.


Subject(s)
Cathepsins/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Epithelium, Corneal/pathology , Inflammation Mediators/metabolism , Matrix Metalloproteinase 9/metabolism , Receptor, PAR-2/metabolism , Cathepsins/pharmacology , Culture Media , Cytokines/genetics , Gene Expression Regulation/drug effects , Humans , Matrix Metalloproteinase 9/genetics , Models, Biological , Receptor, PAR-2/genetics , Signal Transduction/drug effects
15.
J Control Release ; 292: 183-195, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30359668

ABSTRACT

As a potent macrolide immunosuppressant, cyclosporine A (CsA) is used to treat multiple autoimmune diseases, including non-autoimmune and autoimmune-mediated dry eye disease, rheumatoid arthritis and psoriasis. Despite its potency, CsA has poor solubility, poor bioavailability, and can cause serious adverse reactions such as nephrotoxicity and neurotoxicity. To overcome these limitations, we invented a new strategy to carry CsA by fusing its cognate human receptor, cyclophilin A (CypA), to a 73 kDa elastin-like polypeptide (ELP) termed A192 using recombinant protein expression. Derived from human tropoelastin, ELPs are characterized by the ability to phase separate above a temperature that is a function of variables including concentration, molecular weight, and hydrophobicity. The resultant fusion protein, termed CA192, which assembles into a dimeric species in solution, effectively binds and solubilizes CsA with a Kd of 189 nM, comparable to that of endogenous CypA with a Kd of 35.5 nM. The release profile of CsA from CA192 follows a one phase decay model with a half-life of 957.3 h without a burst release stage. Moreover, CA192-CsA inhibited IL-2 expression induced in Jurkat cells through the calcineurin-NFAT signaling pathway with an IC50 of 1.2 nM, comparable to that of free CsA with an IC50 of 0.5 nM. The intravenous pharmacokinetics of CA192 followed a two-compartment model with a mean residence time of 7.3 h. Subcutaneous administration revealed a bioavailability of 30% and a mean residence time of 15.9 h. When given subcutaneously for 2 weeks starting at 14 weeks in male non-obese diabetic (NOD) mice, a model of autoimmune dacryoadenitis used to study Sjögren's syndrome (SS), CA192-CsA (2.5 mg/kg, every other day) significantly (p = 0.014) increased tear production relative to CA192 alone. Moreover, CA192 delivery reduced indications of CsA nephrotoxicity relative to free CsA. CA192 represents a viable new approach to deliver this effective but nephrotoxic agent in a modality that preserves therapeutic efficacy but suppresses drug toxicity.


Subject(s)
Cyclophilin A/administration & dosage , Cyclosporine/administration & dosage , Drug Carriers/administration & dosage , Immunosuppressive Agents/administration & dosage , Peptides/administration & dosage , Sjogren's Syndrome/drug therapy , Animals , Cyclophilin A/chemistry , Cyclophilin A/pharmacokinetics , Cyclosporine/chemistry , Cyclosporine/pharmacokinetics , Disease Models, Animal , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Elastin , HeLa Cells , Humans , Immunosuppressive Agents/pharmacokinetics , Interleukin-2/metabolism , Jurkat Cells , Male , Mice, Inbred BALB C , Mice, Inbred NOD , NFATC Transcription Factors/metabolism , Peptides/chemistry , Peptides/pharmacokinetics , Sjogren's Syndrome/metabolism , Tears/metabolism
16.
Exp Eye Res ; 176: 243-251, 2018 11.
Article in English | MEDLINE | ID: mdl-30201519

ABSTRACT

The male Non-Obese Diabetic (NOD) mouse is an established model of autoimmune dacryoadenitis characteristic of Sjögren's Syndrome (SS), but development of diabetes may complicate studies. The Non-Obese Diabetes Resistant (NOR) mouse is a MHC-II matched diabetes-resistant alternative, but development of autoimmune dacryoadenitis is not well-characterized. We compare features of SS in male NOD and NOR mice at 12 and 20 weeks. Stimulated tear secretion was decreased in 12 week NOD relative to BALB/c mice (p < 0.05), while by 20 weeks both NOD and NOR showed decreased stimulated tear secretion relative to BALB/c mice (p < 0.001). Tear CTSS activity was elevated in NOD and NOR relative to BALB/c mice (p < 0.05) at 12 and 20 weeks. While NOD and NOR lacrimal glands (LG) showed increased LG lymphocytic infiltration at 12 and 20 weeks relative to BALB/c mouse LG (p < 0.05), the percentage in NOD was higher relative to NOR at each age (p < 0.05). Gene expression of CTSS, MHC II and IFN-γ in LG were significantly increased in NOD but not NOR relative to BALB/c at 12 and 20 weeks. Redistribution of the secretory effector, Rab3D in acinar cells was observed at both time points in NOD and NOR, but thinning of myoepithelial cells at 12 weeks in NOD and NOR mice was restored by 20 weeks in NOR mice. NOD and NOR mice share features of SS-like autoimmune dacryoadenitis, suggesting common disease etiology. Other findings suggest more pronounced lymphocytic infiltration in NOD mouse LG including increased pro-inflammatory factors that may be unique to this model.


Subject(s)
Dacryocystitis/physiopathology , Disease Models, Animal , Lacrimal Apparatus/physiopathology , Animals , Blood Glucose/metabolism , Dacryocystitis/genetics , Dacryocystitis/metabolism , Fluorescent Antibody Technique, Indirect , Genes, MHC Class II/genetics , Inflammation/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Mutant Strains , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Tears/physiology , rab3 GTP-Binding Proteins/metabolism
17.
Sci Rep ; 8(1): 11044, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038391

ABSTRACT

Cathepsin S (CTSS) activity is elevated in Sjögren's Syndrome (SS) patient tears. Here we tested whether protease inhibition and cystatin C (Cys C) levels are reduced in SS tears, which could lead to enhanced CTSS-driven degradation of tear proteins. CTSS activity against Cys C, LF and sIgA was tested in SS or healthy control tears. Tears from 156 female subjects (33, SS; 33, rheumatoid arthritis; 31, other autoimmune diseases; 35, non-autoimmune dry eye (DE); 24, healthy controls) were analyzed for CTSS activity and Cys C, LF, and sIgA levels. Cys C and LF showed enhanced degradation in SS tears supplemented with recombinant CTSS, but not supplemented healthy control tears. CTSS activity was significantly increased, while Cys C, LF and sIgA levels were significantly decreased, in SS tears compared to other groups. While tear CTSS activity remained the strongest discriminator of SS in autoimmune populations, combining LF and CTSS improved discrimination of SS beyond CTSS in DE patients. Reductions in Cys C and other endogenous proteases may enhance CTSS activity in SS tears. Tear CTSS activity is reconfirmed as a putative biomarker of SS in an independent patient cohort while combined LF and CTSS measurements may distinguish SS from DE patients.


Subject(s)
Cathepsins/metabolism , Eye Proteins/metabolism , Sjogren's Syndrome/metabolism , Animals , Cathepsins/genetics , Cystatin C/genetics , Cystatin C/metabolism , Eye Proteins/genetics , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Middle Aged , Sjogren's Syndrome/genetics
18.
Sci Rep ; 8(1): 9919, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29967327

ABSTRACT

The purpose of the present studies was to investigate the impact of chronic inflammation of the lacrimal gland, as occurs in Sjögren's syndrome, on the morphology and function of myoepithelial cells (MECs). In spite of the importance of MECs for lacrimal gland function, the effect of inflammation on MECs has not been well defined. We studied changes in MEC structure and function in two animal models of aqueous deficient dry eye, NOD and MRL/lpr mice. We found a statistically significant reduction in the size of MECs in diseased compared to control lacrimal glands. We also found that oxytocin receptor was highly expressed in MECs of mouse and human lacrimal glands and that its expression was strongly reduced in diseased glands. Furthermore, we found a significant decrease in the amount of two MEC contractile proteins, α-smooth muscle actin (SMA) and calponin. Finally, oxytocin-mediated contraction was impaired in lacrimal gland acini from diseased glands. We conclude that chronic inflammation of the lacrimal gland leads to a substantial thinning of MECs, down-regulation of contractile proteins and oxytocin receptor expression, and therefore impaired acini contraction. This is the first study highlighting the role of oxytocin mediated MEC contraction on lacrimal gland function.


Subject(s)
Acinar Cells/physiology , Lacrimal Apparatus/physiopathology , Muscle Contraction , Receptors, Oxytocin/metabolism , Sjogren's Syndrome/physiopathology , Acinar Cells/metabolism , Animals , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/physiology , Female , Humans , Inflammation/metabolism , Inflammation/physiopathology , Lacrimal Apparatus/metabolism , Male , Mice , Mice, Inbred MRL lpr , Mice, Inbred NOD , Muscle Cells/metabolism , Muscle Cells/physiology , Sjogren's Syndrome/metabolism
19.
Stem Cells Int ; 2017: 3134543, 2017.
Article in English | MEDLINE | ID: mdl-28348600

ABSTRACT

The purpose of the present study was to test the potential of mouse bone marrow-derived mesenchymal stem cells (BD-MSCs) in improving tear production in a mouse model of Sjögren's syndrome dry eye and to investigate the underlying mechanisms involved. NOD mice (n = 20) were randomized to receive i.p. injection of sterile phosphate buffered saline (PBS, control) or murine BD-MSCs (1 × 106 cells). Tears production was measured at baseline and once a week after treatment using phenol red impregnated threads. Cathepsin S activity in the tears was measured at the end of treatment. After 4 weeks, animals were sacrificed and the lacrimal glands were excised and processed for histopathology, immunohistochemistry, and RNA analysis. Following BD-MSC injection, tears production increased over time when compared to both baseline and PBS injected mice. Although the number of lymphocytic foci in the lacrimal glands of treated animals did not change, the size of the foci decreased by 40.5% when compared to control animals. The mRNA level of the water channel aquaporin 5 was significantly increased following delivery of BD-MSCs. We conclude that treatment with BD-MSCs increases tear production in the NOD mouse model of Sjögren's syndrome. This is likely due to decreased inflammation and increased expression of aquaporin 5.

20.
Invest Ophthalmol Vis Sci ; 58(1): 372-385, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28122086

ABSTRACT

Purpose: To evaluate the efficacy of topical rapamycin in treating autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. Methods: We developed rapamycin in a poly(ethylene glycol)-distearoyl phosphatidylethanolamine (PEG-DSPE) micelle formulation to maintain solubility. Rapamycin or PEG-DSPE eye drops (vehicle) were administered in a well-established Sjögren's syndrome disease model, the male nonobese diabetic (NOD) mice, twice daily for 12 weeks starting at 8 weeks of age. Mouse tear fluid was collected and tear Cathepsin S, a putative tear biomarker for Sjögren's syndrome, was measured. Lacrimal glands were retrieved for histological evaluation, and quantitative real-time PCR of genes associated with Sjögren's syndrome pathogenesis. Tear secretion was measured using phenol red threads, and corneal fluorescein staining was used to assess corneal integrity. Results: Lymphocytic infiltration of lacrimal glands from rapamycin-treated mice was significantly (P = 0.0001) reduced by 3.8-fold relative to vehicle-treated mice after 12 weeks of treatment. Rapamycin, but not vehicle, treatment increased tear secretion and decreased corneal fluorescein staining after 12 weeks. In rapamycin-treated mice, Cathepsin S activity was significantly reduced by 3.75-fold in tears (P < 0.0001) and 1.68-fold in lacrimal gland lysates (P = 0.003) relative to vehicle-treated mice. Rapamycin significantly altered the expression of several genes linked to Sjögren's syndrome pathogenesis, including major histocompatibility complex II, TNF-α, IFN-γ, and IL-12a, as well as Akt3, an effector of autophagy. Conclusions: Our findings suggest that topical rapamycin reduces autoimmune-mediated lacrimal gland inflammation while improving ocular surface integrity and tear secretion, and thus has potential for treating Sjögren's syndrome-associated dry eye.


Subject(s)
Cathepsins/biosynthesis , Dacryocystitis/drug therapy , Lacrimal Apparatus/pathology , Sirolimus/administration & dosage , Sjogren's Syndrome/complications , Tears/metabolism , Animals , Cathepsins/genetics , Conjunctiva/metabolism , Conjunctiva/pathology , Dacryocystitis/diagnosis , Dacryocystitis/etiology , Disease Models, Animal , Follow-Up Studies , Gene Expression Regulation , Immunosuppressive Agents/administration & dosage , Male , Mice , Mice, Inbred NOD , Ophthalmic Solutions , Real-Time Polymerase Chain Reaction , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...