Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Metab ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918986

ABSTRACT

Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.

2.
Eur J Pharm Biopharm ; : 114371, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885910

ABSTRACT

Diabetic wounds present a significant global health challenge exacerbated by chronic hyperglycemia-induced oxidative stress, impeding the natural healing process. Despite various treatment strategies, diabetic foot ulceration lacks standardized therapy. Ferulic acid (FA), known for its potent antidiabetic and antioxidant properties, holds promise for diabetic wound management. However, oral administration of FA faces limitations due to rapid oxidation, stability issues, and low bioavailability. The topical application of FA-loaded chitosan nanoparticles (FA-CSNPs) has emerged as a promising approach to overcome these challenges. Here, we report the development of a sustained-release formulation of FA-CSNPs within a hydrogel matrix composed of Chitosan and gelatin. The FA-CSNPs were synthesized using the ionic gelation method andoptimized through a Central Composite Design (CCD) approach. Characterization of the optimized nanoparticles revealed spherical morphology, a particle size of 56.9 ±â€¯2.5 nm, and an impressive entrapment efficiency of 90.3 ±â€¯2.4 %. Subsequently, an FA-CSNPs-loaded hydrogel was formulated, incorporating chitosan as a gelling agent, gelatin to enhance mechanical properties and cell permeation, and glutaraldehyde as a cross-linker. Comprehensive characterization of the hydrogel included pH, moisture loss, porosity, swelling index, rheology, water vapor transmission rate (WVTR), SEM, TEM, invitro drug release studies, antioxidant activity, antibacterial efficacy, cell cytotoxicity, cell migration studies on L929 fibroblast cell line, and stability studies. The stability study demonstrated negligible variations in particle size, zeta potential, and entrapment efficiency over 60 days, ensuring the stable nature of nanoparticles and hydrogel. This innovative delivery approach embedded within a hydrogel matrix holds significant promise for enhancing the therapeutic efficacy of FA-CSNPs-hydrogel in diabetic wound healing applications.

3.
Curr Drug Targets ; 24(16): 1239-1259, 2023.
Article in English | MEDLINE | ID: mdl-37957907

ABSTRACT

The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.


Subject(s)
Diabetes Mellitus , Humans , Drug Delivery Systems/methods , Liposomes , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...