Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 04 25.
Article in English | MEDLINE | ID: mdl-37094804

ABSTRACT

Antimicrobial peptides (AMPs) offer a promising solution to the antibiotic resistance crisis. However, an unresolved serious concern is that the evolution of resistance to therapeutic AMPs may generate cross-resistance to host AMPs, compromising a cornerstone of the innate immune response. We systematically tested this hypothesis using globally disseminated mobile colistin resistance (MCR) that has been selected by the use of colistin in agriculture and medicine. Here, we show that MCR provides a selective advantage to Escherichia coli in the presence of key AMPs from humans and agricultural animals by increasing AMP resistance. Moreover, MCR promotes bacterial growth in human serum and increases virulence in a Galleria mellonella infection model. Our study shows how the anthropogenic use of AMPs can drive the accidental evolution of resistance to the innate immune system of humans and animals. These findings have major implications for the design and use of therapeutic AMPs and suggest that MCR may be difficult to eradicate, even if colistin use is withdrawn.


Subject(s)
Bacterial Infections , Escherichia coli Proteins , Animals , Humans , Colistin , Virulence , Antimicrobial Peptides , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Plasmids
2.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Article in English | MEDLINE | ID: mdl-36759752

ABSTRACT

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Subject(s)
Bacteriophages , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Metagenomics , Bacteriophages/genetics , Bacteria/genetics
3.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35943060

ABSTRACT

Bacterial pathogens show high levels of chromosomal genetic diversity, but the influence of this diversity on the evolution of antibiotic resistance by plasmid acquisition remains unclear. Here, we address this problem in the context of colistin, a 'last line of defence' antibiotic. Using experimental evolution, we show that a plasmid carrying the MCR-1 colistin resistance gene dramatically increases the ability of Escherichia coli to evolve high-level colistin resistance by acquiring mutations in lpxC, an essential chromosomal gene involved in lipopolysaccharide biosynthesis. Crucially, lpxC mutations increase colistin resistance in the presence of the MCR-1 gene, but decrease the resistance of wild-type cells, revealing positive sign epistasis for antibiotic resistance between the chromosomal mutations and a mobile resistance gene. Analysis of public genomic datasets shows that lpxC polymorphisms are common in pathogenic E. coli, including those carrying MCR-1, highlighting the clinical relevance of this interaction. Importantly, lpxC diversity is high in pathogenic E. coli from regions with no history of MCR-1 acquisition, suggesting that pre-existing lpxC polymorphisms potentiated the evolution of high-level colistin resistance by MCR-1 acquisition. More broadly, these findings highlight the importance of standing genetic variation and plasmid/chromosomal interactions in the evolutionary dynamics of antibiotic resistance.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics
4.
Mol Syst Des Eng ; 7(1): 21-33, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35127141

ABSTRACT

The negative membrane potential of bacterial cells influences crucial cellular processes. Inspired by the molecular scaffold of the antimicrobial peptide PGLa, we have developed antimicrobial foldamers with a computer-guided design strategy. The novel PGLa analogues induce sustained membrane hyperpolarization. When co-administered as an adjuvant, the resulting compounds - PGLb1 and PGLb2 - have substantially reduced the level of antibiotic resistance of multi-drug resistant Escherichia coli, Klebsiella pneumoniae and Shigella flexneri clinical isolates. The observed antibiotic potentiation was mediated by hyperpolarization of the bacterial membrane caused by the alteration of cellular ion transport. Specifically, PGLb1 and PGLb2 are selective ionophores that enhance the Goldman-Hodgkin-Katz potential across the bacterial membrane. These findings indicate that manipulating bacterial membrane electrophysiology could be a valuable tool to overcome antimicrobial resistance.

5.
Trends Microbiol ; 29(12): 1058-1061, 2021 12.
Article in English | MEDLINE | ID: mdl-33836929

ABSTRACT

Antimicrobial peptides (AMPs) offer a potential solution to the antibiotic resistance crisis. Recent studies have revealed important evolutionary constraints on the evolution and horizontal spread of AMP resistance in bacteria. Here, we summarize these advances and highlight their importance for therapeutic development of AMPs.


Subject(s)
Antimicrobial Cationic Peptides , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Bacteria , Drug Resistance, Microbial
6.
Nat Commun ; 10(1): 5731, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844052

ABSTRACT

Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/immunology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Bacterial Outer Membrane/drug effects , Bacterial Outer Membrane/immunology , Directed Molecular Evolution , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/immunology , Genes, Bacterial/genetics , Genes, Bacterial/immunology , Microbial Sensitivity Tests , Mutation
7.
Nat Commun ; 10(1): 4538, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586049

ABSTRACT

Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/drug effects , Antimicrobial Cationic Peptides/therapeutic use , Bacteria/drug effects , Bacteria/genetics , Bacterial Infections/drug therapy , Directed Molecular Evolution , Drug Development/methods , Drug Resistance, Multiple, Bacterial/drug effects , Genome, Bacterial/genetics , Humans , Metagenomics , Microbial Sensitivity Tests , Plasmids/genetics , Point Mutation , Soil Microbiology
8.
Nat Microbiol ; 4(3): 447-458, 2019 03.
Article in English | MEDLINE | ID: mdl-30559406

ABSTRACT

The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota, with implications for disease risks.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Phylogeny , Escherichia coli/genetics , Genome, Bacterial , Humans , Metagenomics
9.
Nat Microbiol ; 3(6): 718-731, 2018 06.
Article in English | MEDLINE | ID: mdl-29795541

ABSTRACT

Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/growth & development , Bacterial Outer Membrane Proteins/genetics , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Mutation , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...