Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(2-1): 024110, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491707

ABSTRACT

In this work, we present a systematic comparison of the results obtained from the low-frequency Barkhausen noise recordings in nanocrystalline samples with those from the numerical simulations of the random-field Ising model systems. We performed measurements at room temperature on a field-driven metallic glass stripe made of VITROPERM 800 R, a nanocrystalline iron-based material with an excellent combination of soft and magnetic properties, making it a cutting-edge material for a wide range of applications. Given that the Barkhausen noise emissions emerging along a hysteresis curve are stochastic and depend in general on a variety of factors (such as distribution of disorder due to impurities or defects, varied size of crystal grains, type of domain structure, driving rate of the external magnetic field, sample shape and temperature, etc.), adequate theoretical modeling is essential for their interpretation and prediction. Here the Random field Ising model, specifically its athermal nonequilibrium version with the finite driving rate, stands out as an appropriate choice due to the material's nanocrystalline structure and high Curie temperature. We performed a systematic analysis of the signal properties and magnetization avalanches comparing the outcomes of the numerical model and experiments carried out in a two-decade-wide range of the external magnetic field driving rates. Our results reveal that with a suitable choice of parameters, a considerable match with the experimental results is achieved, indicating that this model can accurately describe the Barkhausen noise features in nanocrystalline samples.

2.
Phys Rev E ; 106(4-1): 044107, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397527

ABSTRACT

We investigate the effects of adiabatic, quasistatic, and finite-rate types of driving on the evolution of disordered three-dimensional ferromagnetic systems, studied within the frame of the nonequilibrium athermal random field Ising model. The effects were examined in all three domains of disorder (low, high, and transitional) for all types of driving, and in a wide range of driving rates for quasistatic and finite-rate driving, providing an extensive overview and comparison of the joint effects that the disorder, type of driving, and rate regime have on the system's behavior.

3.
Phys Rev E ; 103(6-1): 062114, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271613

ABSTRACT

In the present paper we investigate the impact of the external noise and detection threshold level on the simulation data for the systems that evolve through metastable states. As a representative model of such systems we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform white noise and Gaussian white noise with various different standard deviations, imposed on the original response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis of the signal and show how these quantities affect the values of exponent γ_{S/T} (describing the scaling of the average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral three-dimensional cubic lattices of various sizes and disorders.

4.
Phys Rev E ; 100(3-1): 032113, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639960

ABSTRACT

In the present study of the nonequilibrium athermal random-field Ising model we focus on the behavior of the critical disorder R_{c}(l) and the critical magnetic field H_{c}(l) under different boundary conditions when the system thickness l varies. We propose expressions for R_{c}(l) and H_{c}(l) as well as for the effective critical disorder R_{c}^{eff}(l,L) and effective critical magnetic field H_{c}^{eff}(l,L) playing the role of the effective critical parameters for the L×L×l lattices of finite lateral size L. We support these expressions by the scaling collapses of the magnetization and susceptibility curves obtained in extensive simulations. The collapses are achieved with the two-dimensional (2D) exponents for l below some characteristic value, providing thus a numerical evidence that the thin systems exhibit a 2D-like criticality which should be relevant for the experimental analyses of thin ferromagnetic samples.

5.
Sci Rep ; 9(1): 6340, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31004121

ABSTRACT

The interplay between the critical fluctuations and the sample geometry is investigated numerically using thin random-field ferromagnets exhibiting the field-driven magnetisation reversal on the hysteresis loop. The system is studied along the theoretical critical line in the plane of random-field disorder and thickness. The thickness is varied to consider samples of various geometry between a two-dimensional plane and a complete three-dimensional lattice with an open boundary in the direction of the growing thickness. We perform a multi-fractal analysis of the Barkhausen noise signals and scaling of the critical avalanches of the domain wall motion. Our results reveal that, for sufficiently small thickness, the sample geometry profoundly affects the dynamics by modifying the spectral segments that represent small fluctuations and promoting the time-scale dependent multi-fractality. Meanwhile, the avalanche distributions display two distinct power-law regions, in contrast to those in the two-dimensional limit, and the average avalanche shapes are asymmetric. With increasing thickness, the scaling characteristics and the multi-fractal spectrum in thicker samples gradually approach the hysteresis loop criticality in three-dimensional systems. Thin ferromagnetic films are growing in importance technologically, and our results illustrate some new features of the domain wall dynamics induced by magnetisation reversal in these systems.

6.
Sci Rep ; 8(1): 2571, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416055

ABSTRACT

We present a numerical study of the correlations in the occurrence times of consecutive crackling noise events in the nonequilibrium zero-temperature Random Field Ising model in three dimensions. The critical behavior of the system is portrayed by the intermittent bursts of activity known as avalanches with scale-invariant properties which are power-law distributed. Our findings, based on the scaling analysis and collapse of data collected in extensive simulations show that the observed correlations emerge upon applying a finite threshold to the pertaining signals when defining events of interest. Such events are called subavalanches and are obtained by separation of original avalanches in the thresholding process. The correlations are evidenced by power law distributed waiting times and are present in the system even when the original avalanche triggerings are described by a random uncorrelated process.

7.
Phys Rev E ; 95(4-1): 042131, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28505865

ABSTRACT

We present a numerical study of the critical behavior of the nonequilibrium zero-temperature random field Ising model in two dimensions on a triangular lattice. Our findings, based on the scaling analysis and collapse of data collected in extensive simulations of systems with linear sizes up to L=65536, show that the model is in a different universality class than the same model on a quadratic lattice, which is relevant for a better understanding of model universality and the analysis of experimental data.

8.
Phys Rev Lett ; 117(23): 230601, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982624

ABSTRACT

Numerous systems ranging from deformation of materials to earthquakes exhibit bursty dynamics, which consist of a sequence of events with a broad event size distribution. Very often these events are observed to be temporally correlated or clustered, evidenced by power-law-distributed waiting times separating two consecutive activity bursts. We show how such interevent correlations arise simply because of a finite detection threshold, created by the limited sensitivity of the measurement apparatus, or used to subtract background activity or noise from the activity signal. Data from crack-propagation experiments and numerical simulations of a nonequilibrium crack-line model demonstrate how thresholding leads to correlated bursts of activity by separating the avalanche events into subavalanches. The resulting temporal subavalanche correlations are well described by our general scaling description of thresholding-induced correlations in crackling noise.

9.
Article in English | MEDLINE | ID: mdl-24580183

ABSTRACT

We present a numerical analysis of spanning avalanches in a two-dimensional (2D) nonequilibrium zero-temperature random field Ising model. Finite-size scaling analysis, performed for distribution of the average number of spanning avalanches per single run, spanning avalanche size distribution, average size of spanning avalanche, and contribution of spanning avalanches to magnetization jump, is augmented by analysis of spanning field (i.e., field triggering spanning avalanche), which enabled us to collapse averaged magnetization curves below critical disorder. Our study, based on extensive simulations of sufficiently large systems, reveals the dominant role of subcritical 2D-spanning avalanches in model behavior below and at the critical disorder. Other types of avalanches influence finite systems, but their contribution for large systems remains small or vanish.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 1): 051119, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181381

ABSTRACT

We present in detail the scaling analysis and data collapse of avalanche distributions and joint distributions that characterize the recently evidenced critical behavior of the two-dimensional nonequilibrium zero-temperature random field Ising model. The distributions are collected in extensive simulations of systems with linear sizes up to L=131072.

11.
Phys Rev Lett ; 106(17): 175701, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21635049

ABSTRACT

We give numerical evidence that the two-dimensional nonequilibrium zero-temperature random field Ising model exhibits critical behavior. Our findings are based on the results of scaling analysis and collapsing of data, obtained in extensive simulations of systems with sizes sufficiently large to clearly display the critical behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...