Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 758: 143649, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33293087

ABSTRACT

Up to 25% of plastic waste in Europe is still disposed of in landfills, despite recycling efforts. The plastic waste in the landfill plot may be exposed both to abiotic and biotic degradation processes, although it is thought that most of the plastic materials tend to be resistant to biodegradation or biodeterioration even after a long time. To verify if polypropylene (PP) can undergo the process of short-term biodegradation and how this process is manifested in a municipal waste landfill, we collected a plastic sample from an already closed landfill plot estimating its age at approximately 5 years. Fourier-Transform Infrared Spectroscopy led to sample identification as PP as well as showed additional bands which are not specific to polymer structure but rather result from microbial metabolism. Differential Scanning Calorimetry was performed to examine the influence of the environmental degradation process on the degree of crystallisation of the tested PP. Moreover, significant changes on the surface of an old PP packaging were observed with Scanning Electron Microscopy (SEM) showing clear signs of PP delamination which resulted in microplastic particles formation (smaller than 5 µm in diameter). Additionally, several round and oval shaped structures were observed with SEM leading to the suspicion of biofilm formation on the PP surface. Indeed, the microorganisms were present in a vast amount on the old PP surface and possibly formed a viable biofilm as it was confirmed with fluorescence microscopy. These data show that plastic waste can be inhabited by microorganisms from the ambient environment which may probably lead to its faster degradation. However, this process should be investigated in more detail in order to shed light upon the possible risk factors of plastic biodegradation in waste landfills to the environment and human health. Even after five years, polypropylene can undergo deterioration/biodegradation in a waste landfill with viable microbial cells on its surface, possibly involved in its degradation.


Subject(s)
Plastics , Refuse Disposal , Europe , Humans , Polypropylenes/analysis , Recycling , Solid Waste/analysis , Waste Disposal Facilities
2.
Materials (Basel) ; 13(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050040

ABSTRACT

This paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially designed elastic porous structures as candidates in cancellous tissue engineering. Additionally, we examined whether 3D printing affects the structure and thermal stability of the filament. According to the obtained results, the processing parameters leading to the formation of high-quality TPU filament (TPU_F) were captured. The results showed that TPU_F remains stable under the FFF 3DP conditions. The series of in vitro studies involving long- and short-term degradation (0.1 M phosphate-buffered saline (PBS); 5 M sodium hydroxide (NaOH)), cytotoxicity (ISO 10993:5) and bioactivity (simulated body fluid (SBF) incubation), showed that TPU printouts possessing degradability of long-term degradable tissue constructs, are biocompatible and susceptible to mineralization in terms of hydroxyapatite (HAp) formation during SBF exposure. The formation of HAp on the surface of the specially designed porous tissue structures (PTS) was confirmed by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) studies. The compression test of PTS showed that the samples were strengthened due to SBF exposure and deposited HAp on their surface. Moreover, the determined values of the tensile strength (~30 MPa), Young's modulus (~0.2 GPa), and compression strength (~1.1 MPa) allowed pre-consideration of TPU_F for FFF 3DP of cancellous bone tissue structures.

3.
Materials (Basel) ; 12(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884832

ABSTRACT

The widespread use of three-dimensional (3D) printing technologies in medicine has contributed to the increased demand for 3D printing materials. In addition, new printing materials that are appearing in the industry do not provide a detailed material characterization. In this paper, we present the synthesis and characterization of polycaprolactone (PCL) based medical-grade thermoplastic polyurethanes, which are suitable for forming in a filament that is dedicated to Fused Deposition Modeling 3D (FDM 3D)printers. For this purpose, we synthesized polyurethane that is based on PCL and 1,6-hexamethylene diisocyanate (HDI) with a different isocyanate index NCO:OH (0.9:1, 1.1:1). Particular characteristics of synthesized materials included, structural properties (FTIR, Raman), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), mechanical and surfaces (contact angle) properties. Moreover, pre-biological tests in vitro and degradation studies were also performed. On the basis of the conducted tests, a material with more desirable properties S-TPU(PCL)0.9 was selected and the optimization of filament forming via melt-extrusion process was described. The initial biological test showed the biocompatibility of synthesized S-TPU(PCL)0.9 with respect to C2C12 cells. It was noticed that the process of thermoplastic polyurethanes (TPU) filaments forming by extrusion was significantly influenced by the appropriate ratio between the temperature profile, rotation speed, and dosage ratio.

4.
Polymers (Basel) ; 10(12)2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30961229

ABSTRACT

The possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers during a melt-extrusion process. S-TPU consisting of aliphatic hexamethylene 1,6-diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) (PEBA) and 1,4 butandiol (BDO) as a chain extender, was synthesized without the use of a catalyst. The filament (F-TPU) properties were characterized by rheological, mechanical, physico-chemical and in vitro biological properties. The tests showed biocompatibility of the obtained filament as well as revealed no significant effect of the filament formation process on its properties. This study may contribute to expanding the range of medical-grade flexible filaments for standard low-budget FDM printers.

5.
Polymers (Basel) ; 9(8)2017 Aug 01.
Article in English | MEDLINE | ID: mdl-30971004

ABSTRACT

In this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as a modifier used to stimulate bone tissue regeneration. The obtained unmodified (PURs) and modified with GPCa (PURs-M) PEEURs were studied by various techniques. It was confirmed that urethane prepolymer reacts with GPCa modifier. Further analysis of the obtained PURs and PURs-M by Fourier transform infrared (FTIR) and Raman spectroscopy revealed the chemical composition typical for PUs by the confirmed presence of urethane bonds. Moreover, the FTIR and Raman spectra indicated that GPCa was incorporated into the main PU chain at least at one-side. The scanning electron microscopy (SEM) analysis of the PURs-M surface was in good agreement with the FTIR and Raman analysis due to the fact that inclusions were observed only at 20% of its surface, which were related to the non-reacted GPCa enclosed in the PUR matrix as filler. Further studies of hydrophilicity, mechanical properties, biocompatibility, short term-interactions, and calcification study lead to the final conclusion that the obtained PURs-M may by suitable candidate material for further scaffold fabrication. Scaffolds were prepared by the solvent casting/particulate leaching technique (SC/PL) combined with thermally-induced phase separation (TIPS). Such porous scaffolds had satisfactory pore sizes (36⁻100 µm) and porosity (77⁻82%) so as to be considered as suitable templates for bone tissue regeneration.

6.
ScientificWorldJournal ; 2013: 450132, 2013.
Article in English | MEDLINE | ID: mdl-24363617

ABSTRACT

Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility.


Subject(s)
Gelatin/chemistry , Polyurethanes/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials , Biodegradable Plastics , Boronic Acids , Cyanates , Epoxy Compounds , Fatty Acids, Monounsaturated , Glycols , Isocyanates , Materials Testing , Mechanical Phenomena , Rapeseed Oil , Saline Solution, Hypertonic
7.
Environ Technol ; 33(13-15): 1781-8, 2012.
Article in English | MEDLINE | ID: mdl-22988640

ABSTRACT

The aim of this research was to apply a simple and quick method of size and shape characterization by TEM to diesel exhaust particles from large-capacity, high-performance trucks. Particulate matter (PM) samples were collected while the engines were idling. Investigation of this type of emission is essential because vehicles are idling at stop lights, in traffic, or during slow movement, goods loading and unloading. In these conditions, PM emission cumulates in a small area. It was found that PM from vehicle exhaust emissions can be divided into three groups: soot, irregular-shaped particles and circular particles. Irregular-shaped particles and soot aggregates were present in the exhausts of the three types of vehicle tested. Circular particles were identified only in the samples collected from exhaust emissions from the MAN vehicle, and were present in small amounts. The average surface area was in the range of 0.06 microm2 to 0.24 microm2. Mean perimeter fluctuated from 2.09 microm to 4.14 microm, and Feret diameter from 0.21 microm to 0.31 microm. Circularity was in the range of 0.12 to 0.30. Aspect ratio was around 0.30 to 0.45. Feret diameter seems to be a good parameter to define the mean size of particles, but does not take into account the influence of the shape. Therefore, this measurement seems to be useful just in the case of spherical or very rounded particles, not for all diesel PM. Thus, it is necessary to consider circularity or aspect ratio for DPM characterization.


Subject(s)
Air Pollutants/analysis , Microscopy, Electron, Transmission/methods , Particle Size , Vehicle Emissions/analysis , Environmental Monitoring/methods , Motor Vehicles
8.
Waste Manag ; 32(10): 1742-51, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22687707

ABSTRACT

The dynamic increase in the manufacture of rubber products, particularly those used in the automobile industry, is responsible for a vast amount of wastes, mostly in the form of used tyres, of which more than 17 million tonnes are produced globally each year. The widely differing chemical compositions and the cross-linked structures of rubber in tyres are the prime reason why they are highly resistant to biodegradation, photochemical decomposition, chemical reagents and high temperatures. The increasing numbers of used tyres therefore constitute a serious threat to the natural environment. The progress made in recent years in the management of polymer wastes has meant that used tyres are starting to be perceived as a potential source of valuable raw materials. The development of studies into their more efficient recovery and recycling, and the European Union's restrictive legal regulations regarding the management of used tyres, have led to solutions enabling this substantial stream of rubber wastes to be converted into energy or new polymer materials. In this article we present the relevant literature describing innovative organizational approaches in the management of used tyres in the European Union member countries and the possible uses of waste tyres as a source of raw materials or alternative fossil fuels.


Subject(s)
Recycling , Waste Management/legislation & jurisprudence , Europe , Rubber
9.
Anal Bioanal Chem ; 399(9): 3261-70, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21110012

ABSTRACT

The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 µm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 µm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 µm made up the most numerous group in all the samples collected in the refinery.


Subject(s)
Air Pollutants/chemistry , Dust/analysis , Environmental Monitoring/methods , Microscopy, Electron, Transmission/methods , Particle Size
10.
Crit Rev Anal Chem ; 41(4): 314-334, 2011.
Article in English | MEDLINE | ID: mdl-28094548

ABSTRACT

The present article reviews studies on air solid particles carried out with the use of electron microscopy. Particle analysis combining scanning and transmission electron microscopy (SEM and TEM) can be used to derive size-resolved information of the composition, mixing state, morphology, and complex refractive index of atmospheric aerosol particles. It seems that electron microscopy is more widely used in atmospheric particulate matter analysis, but the usage of this method is sometimes problematic. First of all, there is no standard methodology adapted for dust analysis, and it is difficult to compare the results coming from different laboratories. Nevertheless, it was shown that this method has potential to be used in the future as a standard monitoring procedure of air solid particles.

11.
J Microencapsul ; 26(7): 588-92, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19839794

ABSTRACT

Amorphous paclitaxel dissolves rapidly (1 mg mL(-1)) in an isotonic aqueous dispersion of egg lecithin (5% w/w), a new biocompatible submicron drug carrier consisting of structured aggregates with average size 0.5 microm. The solution is physically stable for at least 24 h and can be administered as an intravenous infusion. After a 5 h infusion in rabbits (0.66 mg kg(-1) h(-1)), changes in blood morphology were comparable to those observed in rabbits that received the commercial product Taxol. No changes in the enzyme profiles (alanine/aspartate aminotransferase or alkaline phosphatase) were observed. However, during infusion of the new formulation plasma concentration of paclitaxel (292 +/- 182 ng mL(-1)) was lower than observed after Cremophor-containing Taxol (540 +/- 262 ng mL(-1)). This result may indicate that the tissue distribution is different for the two drug formulations. Daily intraperitoneal administrations (3 doses/day) in mice demonstrated that the new carrier solution was non-toxic and, relative to Taxol, the new formulation exhibited similar or less toxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Lecithins/chemistry , Paclitaxel/chemistry , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Chemistry, Pharmaceutical , Female , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Paclitaxel/pharmacology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...