Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 18(7)2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28654010

ABSTRACT

There is a complex collection of neuroendocrine function during the postpartum period. Prolactin (PRL) released by suckling stimulus and its PRL receptors (PRL-R) in the central nervous system (CNS) are involved in hyporesponsiveness of the hypothalamic-pituitary-adrenal (HPA) axis in lactating mammals including rodents and humans. It is not clear how long it takes to reestablish the attenuated HPA axis activity of lactating rats to a pre-pregnancy state after pup separation. We first tested the hypothesis that HPA axis activity in response to an acute stress in postpartum rats would return to a pre-pregnancy state after pup separation. Restraint stress for 30 min was performed at the end of pup separation as an acute stressor. Plasma levels of corticosterone (CORT) were measured following restraint stress or no-stress (control) in virgin rats and postpartum rats housed with their pups or with pup removal for different periods of time of one hour, 24 h, or eight days. We then tested the hypothesis that circulating PRL level and CNS PRL-R gene expression were involved in mediating the acute stress response in postpartum rats. Plasma levels of PRL and PRL-R mRNA levels in the choroid plexus of the CNS were determined in both no-stress and stress, virgin rats, and postpartum rats housed with their pups or with pup removal for various periods, and their correlation with plasma CORT levels was assessed. The results demonstrated that PRL levels declined to virgin state in all postpartum rats separated from their pups, including the dams with one-hour pup separation. Stress-induced HPA activity dampened in lactating rats housed with pups, and returned to the pre-pregnancy state after 24 h of pup separation when both circulating PRL level and CNS PRL-R expression were restored to a pre-pregnancy state. Additionally, basal plasma CORT and CNS PRL-R expression were significantly correlated in rats with various pup status. This study suggested that stress-induced HPA activation occurred when PRL-R expression was similar to the level of virgin females, indicating that PRL-R upregulation contributes to an attenuated HPA response to acute stress. Understanding neuroendocrine responses to stress during the postpartum period is critical to understand postpartum-related neuropsychiatric illnesses and to maintain mental health in postpartum women.


Subject(s)
Corticosterone/blood , Postpartum Period , Prolactin/blood , Stress, Physiological , Animals , Animals, Newborn , Central Nervous System/metabolism , Female , Gene Expression Regulation , Lactation , Pregnancy , RNA, Messenger/analysis , RNA, Messenger/genetics , Rats , Receptors, Prolactin/genetics
2.
PLoS One ; 11(11): e0166416, 2016.
Article in English | MEDLINE | ID: mdl-27893788

ABSTRACT

Prolactin (PRL) is well characterized for its roles in initiation and maintenance of lactation, and it also suppresses stress-induced responses. Feeding a high-fat diet (HFD) disrupts activity of the hypothalamic-pituitary-adrenal (HPA) axis. Whether PRL regulates HPA axis activation under HFD feeding is not clear. Male and female wildtype (WT) and PRL knockout (KO) mice were fed either a standard low-fat diet (LFD) or HFD for 12 weeks. Circulating corticosterone (CORT) levels were measured before, during, and after mice were subjected to an acute restraint stress or remained in their home cages as no stress controls. HFD feeding increased leptin levels, but the increase was lower in KO than in WT mice. All stressed female groups and only LFD-fed stressed males had elevated CORT levels compared to their no stress same-sex counterparts regardless of genotype. These results indicated that HFD consumption blunted the HPA axis response to acute stress in males but not females. Additionally, basal hypothalamic CRH content was lower in HFD than LFD males, but was similar among female groups. Furthermore, although basal CORT levels were similar among KO and WT groups, CORT levels were higher in KO mice than their WT counterparts during stress, suggesting that loss of PRL led to greater HPA axis activation. Basal PRL receptor mRNA levels in the choroid plexus were higher in HFD than LFD same-sex counterparts, suggesting activation of central PRL's action by HFD feeding in both males and females. Current results confirmed PRL's roles in suppression of the stress-induced HPA axis activation. Although HFD feeding activated central PRL's action in both sexes, only the male HPA axis was dampened by HFD feeding.


Subject(s)
Diet, High-Fat , Prolactin/genetics , Stress, Physiological , Animals , Body Composition , Body Weight , Choroid Plexus/metabolism , Corticosterone/blood , Diet, Fat-Restricted , Energy Intake , Female , Hypothalamus/metabolism , Leptin/blood , Male , Mice , Mice, Knockout , Prolactin/deficiency , RNA, Messenger/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism
3.
Physiol Behav ; 130: 99-107, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24709620

ABSTRACT

Sex differences exist in the regulation of energy homeostasis in response to calorie scarcity or excess. Brain-derived neurotrophic factor (BDNF) is one of the anorexigenic neuropeptides regulating energy homeostasis. Expression of Bdnf mRNA in the ventromedial nucleus of the hypothalamus (VMH) is closely associated with energy and reproductive status. We hypothesized that Bdnf expression in the VMH was differentially regulated by altered energy balance in male and female rats. Using dietary intervention, including fasting-induced negative energy status and high-fat diet (HFD) feeding-induced positive energy status, along with low-fat diet (LFD) feeding and HFD pair-feeding (HFD-PF), effects of diets and changes in energy status on VMH Bdnf expression were compared between male and female rats. Fasted males but not females had lower VMH Bdnf expression than their fed counterparts following 24-hour fasting, suggesting that fasted males reduced Bdnf expression to drive hyperphagia and body weight gain. Male HFD obese and HFD-PF non-obese rats had similarly reduced expression of Bdnf compared with LFD males, indicating that dampened Bdnf expression was associated with feeding a diet high in fat instead of increased adiposity. Decreased BDNF signaling during HFD feeding would increase a drive to eat and may contribute to diet-induced obesity in males. In contrast, VMH Bdnf expression was stably maintained in females when energy homeostasis was disturbed. These results suggest sex-distinct regulation of central Bdnf expression by diet and energy status.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Diet, Fat-Restricted , Diet, High-Fat , Fasting/physiology , Sex Characteristics , Ventromedial Hypothalamic Nucleus/physiology , Adipose Tissue/physiology , Adipose Tissue/physiopathology , Animals , Blood Glucose/physiology , Eating/physiology , Estradiol/blood , Female , Gene Expression/physiology , Hyperphagia/physiopathology , Leptin/blood , Male , Obesity/physiopathology , RNA, Messenger/metabolism , Rats, Long-Evans , Ventromedial Hypothalamic Nucleus/physiopathology , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...