Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 122(8): 1470-1490, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36919241

ABSTRACT

Despite the molecular evidence that a nearly linear steady-state current-voltage relationship in mammalian astrocytes reflects a total current resulting from more than one differentially regulated K+ conductance, detailed ordinary differential equation (ODE) models of membrane voltage Vm are still lacking. Various experimental results reporting altered rectification of the major Kir currents in glia, dominated by Kir4.1, have motivated us to develop a detailed model of Vm dynamics incorporating the weaker potassium K2P-TREK1 current in addition to Kir4.1, and study the stability of the resting state Vr. The main question is whether, with the loss of monotonicity in glial I-V curve resulting from altered Kir rectification, the nominal resting state Vr remains stable, and the cell retains the trivial, potassium electrode behavior with Vm after EK. The minimal two-dimensional model of Vm near Vr showed that an N-shape deformed Kir I-V curve induces multistability of Vm in a model that incorporates K2P activation kinetics, and nonspecific K+ leak currents. More specifically, an asymmetrical, nonlinear decrease of outward Kir4.1 conductance, turning the channels into inward rectifiers, introduces instability of Vr. That happens through a robust bifurcation giving birth to a second, more depolarized stable resting state Vdr > -10 mV. Realistic recordings from electrographic seizures were used to perturb the model. Simulations of the model perturbed by constant current through gap junctions and seizure-like discharges as local field potentials led to depolarization and switching of Vm between the two stable states, in a downstate-upstate manner. In the event of prolonged depolarizations near Vdr, such catastrophic instability would affect all aspects of the glial function, from metabolic support to membrane transport, and practically all neuromodulatory roles assigned to glia.


Subject(s)
Neuroglia , Potassium , Pregnancy , Animals , Female , Membrane Potentials , Potassium/metabolism , Neuroglia/metabolism , Biological Transport , Mammals/metabolism
2.
J Neurosci Methods ; 326: 108373, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31377177

ABSTRACT

BACKGROUND: Standard segmentation of high-contrast electron micrographs (EM) identifies myelin accurately but does not translate easily into measurements of individual axons and their myelin, even in cross-sections of parallel fibers. We describe automated segmentation and measurement of each myelinated axon and its sheath in EMs of arbitrarily oriented human white matter from autopsies. NEW METHODS: Preliminary segmentation of myelin, axons and background by machine learning, using selected filters, precedes automated correction of systematic errors. Final segmentation is done by a deep neural network (DNN). Automated measurement of each putative fiber rejects measures encountering pre-defined artifacts and excludes fibers failing to satisfy pre-defined conditions. RESULTS: Improved segmentation of three sets of 30 annotated images each (two sets from human prefrontal white matter and one from human optic nerve) is achieved with a DNN trained only with a subset of the first set from prefrontal white matter. Total number of myelinated axons identified by the DNN differed from expert segmentation by 0.2%, 2.9%, and -5.1%, respectively. G-ratios differed by 2.96%, 0.74% and 2.83%. Intraclass correlation coefficients between DNN and annotated segmentation were mostly >0.9, indicating nearly interchangeable performance. COMPARISON WITH EXISTING METHOD(S): Measurement-oriented studies of arbitrarily oriented fibers from central white matter are rare. Published methods are typically applied to cross-sections of fascicles and measure aggregated areas of myelin sheaths and axons, allowing estimation only of average g-ratio. CONCLUSIONS: Automated segmentation and measurement of axons and myelin is complex. We report a feasible approach that has so far proven comparable to manual segmentation.


Subject(s)
Axons , Cerebrum/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Microscopy, Electron/methods , Myelin Sheath , White Matter/diagnostic imaging , Autopsy , Humans , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...