Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Adv Sci (Weinh) ; 10(25): e2301904, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37439408

ABSTRACT

Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.

3.
J Phys Chem Lett ; 14(20): 4644-4651, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37167107

ABSTRACT

Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.

4.
ACS Appl Electron Mater ; 5(2): 812-820, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873263

ABSTRACT

Indium gallium zinc oxide (IGZO)-based ferroelectric thin-film transistors (FeTFTs) are being vigorously investigated for being deployed in computing-in-memory (CIM) applications. Content-addressable memories (CAMs) are the quintessential example of CIM, which conduct a parallel search over a queue or stack to obtain the matched entries for a given input data. CAM cells offer the ability for massively parallel searches in a single clock cycle throughout an entire CAM array for the input query, thereby enabling pattern matching and searching functionality. Therefore, CAM cells are used extensively for pattern matching or search operations in data-centric computing. This paper investigates the impact of retention degradation on IGZO-based FeTFT on the multibit operation in content CAM cell applications. We propose a scalable multibit 1FeTFT-1T-based CAM cell composed of only one FeTFT and one transistor, thus significantly improving the density and energy efficiency compared with conventional complementary metal-oxide-semiconductor (CMOS)-based CAM. We successfully demonstrate the operations of our proposed CAM with storage and search by exploiting the multilevel states of the experimentally calibrated IGZO-based FeTFT devices. We also investigate the impact of retention degradation on the search operation. Our proposed IGZO-based 3-bit and 2-bit CAM cell shows 104 s and 106 s retention, respectively. The single-bit CAM cell shows lifelong (10 years) retention.

6.
Adv Sci (Weinh) ; 9(25): e2202803, 2022 09.
Article in English | MEDLINE | ID: mdl-35780494

ABSTRACT

Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.


Subject(s)
Metal Nanoparticles , Nanostructures , Gold/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , X-Ray Diffraction
7.
Ultramicroscopy ; 235: 113494, 2022 May.
Article in English | MEDLINE | ID: mdl-35228144

ABSTRACT

In situ TEM utilizing windowed gas cells is a promising technique for studying catalytic processes, wherein temperature is one of the most important parameters to be controlled. Current gas cells are only capable of temperature measurement on a global (mm) scale, although the local temperature at the spot of observation (µm to nm scale) may significantly differ. Thus, local temperature fluctuations caused by gas flow and heat dissipation dynamics remain undetected when solely relying on the global device feedback. In this study, we overcome this limitation by measuring the specimen temperature in situ utilizing parallel-beam electron diffraction at gold nanoparticles. By combining this technique with an advanced data processing algorithm, we achieve sub-Kelvin precision in both, vacuum as well as gaseous environments. Mitigating charging effects is furthermore shown to minimize systematic errors. By utilizing this method, we characterize the local thermal stability of a state-of-the-art gas cell equipped with heating capability in vacuum and under various gas-flow conditions. Our findings provide crucial reference for in situ investigations into catalysis.

8.
Gels ; 8(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35200450

ABSTRACT

Bottom-up approaches in solutions enable the low-temperature preparation of hybrid thin films suitable for printable transparent and flexible electronic devices. We report the obtainment of new transparent PMMA/ZrO2 nanostructured -building blocks (nBBs) hybrid thin films (61-75 nm) by a modified sol-gel method using zirconium ethoxide, Zr(OEt)4, and 3-methacryloxypropyl trimethoxysilane (MPS) as a coupling agent and methylmethacrylate monomer (MMA). The effect of low-temperature and UV irradiation on the nBBs gel films is discussed. The thermal behaviors of the hybrid sols and as-deposed gel films were investigated by modulated thermogravimetric (mTG) and differential scanning calorimetry (DSC) analysis. The chemical structure of the resulted films was elucidated by X-ray photoelectron (XPS), infrared (IR) and Raman spectroscopies. Their morphology and crystalline structure were observed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and grazing incidence X-ray diffraction. The cured films show zirconia nanocrystallites of 2-4 nm in the hybrid matrix and different self-assembled structures for 160 °C or UV treatment; excellent dielectric behavior, with dielectric constant values within 6.7-17.9, depending on the Zr(OEt)4:MMA molar ratio, were obtained.

9.
Nanoscale Adv ; 3(9): 2466-2474, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134158

ABSTRACT

A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.

10.
Biosensors (Basel) ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933070

ABSTRACT

Analysis of sweat chloride levels in cystic fibrosis (CF) patients is essential not only for diagnosis but also for the monitoring of therapeutic responses to new drugs, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and potentiators. Using iontophoresis as the gold standard can cause complications like burns, is uncomfortable, and requires repetitive hospital visits, which can be particularly problematic during a pandemic, where distancing and hygiene requirements are increased; therefore, it is necessary to develop fast and simple measures for the diagnosis and monitoring of CF. A screen-printed, low-cost chloride sensor was developed to remotely monitor CF patients. Using potentiometric measurements, the performance of the sensor was tested. It showed good sensitivity and a detection limit of 2.7 × 10-5 mol/L, which covered more than the complete concentration range of interest for CF diagnosis. Due to its fast response of 30 s, it competes well with standard sensor systems. It also offers significantly reduced costs and can be used as a portable device. The analysis of real sweat samples from healthy subjects, as well as CF patients, demonstrates a proper distinction using the screen-printed sensor. This approach presents an attractive remote measurement alternative for fast, simple, and low-cost CF diagnosis and monitoring.


Subject(s)
Biosensing Techniques , Chlorides/analysis , Sweat/chemistry , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator , Humans
11.
Sci Rep ; 10(1): 13676, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32792664

ABSTRACT

The composition of Van-der-Waals heterostructures is conclusively determined using a hybrid evaluation scheme of data acquired by optical microspectroscopy. This scheme deploys a parameter set comprising both change in reflectance and wavelength shift of distinct extreme values in reflectance spectra. Furthermore, the method is supported by an accurate analytical model describing reflectance of multilayer systems acquired by optical microspectroscopy. This approach allows uniquely for discrimination of 2D materials like graphene and hexagonal boron nitride (hBN) and, thus, quantitative analysis of Van-der-Waals heterostructures containing structurally very similar materials. The physical model features a transfer-matrix method which allows for flexible, modular description of complex optical systems and may easily be extended to individual setups. It accounts for numerical apertures of applied objective lenses and a glass fiber which guides the light into the spectrometer by two individual weighting functions. The scheme is proven by highly accurate quantification of the number of layers of graphene and hBN in Van-der-Waals heterostructures. In this exemplary case, the fingerprint of graphene involves distinct deviations of reflectance accompanied by additional wavelength shifts of extreme values. In contrast to graphene, the fingerprint of hBN reveals a negligible deviation in absolute reflectance causing this material being only detectable by spectral shifts of extreme values.

12.
J Vis Exp ; (149)2019 07 15.
Article in English | MEDLINE | ID: mdl-31355798

ABSTRACT

The fabrication and preparation of graphene-supported microwell liquid cells (GSMLCs) for in situ electron microscopy is presented in a stepwise protocol. The versatility of the GSMLCs is demonstrated in the context of a study about etching and growth dynamics of gold nanostructures from a HAuCl4 precursor solution. GSMLCs combine the advantages of conventional silicon- and graphene-based liquid cells by offering reproducible well depths together with facile cell manufacturing and handling of the specimen under investigation. The GSMLCs are fabricated on a single silicon substrate which drastically reduces the complexity of the manufacturing process compared to two-wafer-based liquid cell designs. Here, no bonding or alignment process steps are required. Furthermore, the enclosed liquid volume can be tailored to the respective experimental requirements by simply adjusting the thickness of a silicon nitride layer. This enables a significant reduction of window bulging in the electron microscope vacuum. Finally, a state-of-the-art quantitative evaluation of single particle tracking and dendrite formation in liquid cell experiments using only open source software is presented.


Subject(s)
Graphite/chemistry , Microscopy, Electron, Transmission/methods , Microtechnology/instrumentation , Gold/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polymethyl Methacrylate/chemistry , Silicon Compounds/chemistry
13.
Nano Lett ; 18(11): 7222-7229, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30346790

ABSTRACT

The growth of silver shells on gold nanorods is investigated by in situ liquid cell transmission electron microscopy using an advanced liquid cell architecture. The design is based on microwells in which the liquid is confined between a thin Si3N4 membrane on one side and a few-layer graphene cap on the other side. A well-defined specimen thickness and an ultraflat cell top allow for the application of high-resolution TEM and the application of analytical TEM techniques on the same sample. The combination of high-resolution data with chemical information is validated by radically new insights into the growth of silver shells on cetrimonium bromide stabilized gold nanorods. It is shown that silver bromide particles already formed in the stock solution play an important role in the exchange of silver ions. The Ag shell growth can be directly correlated with the layer-by-layer dissolution of AgBr nanocrystals, which can be controlled by the electron flux density via distinctly generated chemical species in the solvent. The derived model framework is confirmed by in situ UV-vis absorption spectroscopy evaluating the blue shift in the longitudinal surface plasmon resonance of anisotropic NRs in a complementary batch experiment.

14.
Phys Chem Chem Phys ; 17(34): 22106-14, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26256208

ABSTRACT

In this work we demonstrate the fabrication of germanium nanoparticle (NP) based electronics. The whole process chain from the nanoparticle production up to the point of inverter integration is covered. Ge NPs with a mean diameter of 33 nm and a geometric standard deviation of 1.19 are synthesized in the gas phase by thermal decomposition of GeH4 precursor in a seeded growth process. Dispersions of these particles in ethanol are employed to fabricate thin particulate films (60 to 120 nm in thickness) on substrates with a pre-patterned interdigitated aluminum electrode structure. The effect of temperature treatment, polymethyl methacrylate encapsulation and alumina coating by plasma-assisted atomic layer deposition (employing various temperatures) on the performance of these layers as thin film transistors (TFTs) is investigated. This coating combined with thermal annealing delivers ambipolar TFTs which show an Ion/Ioff ratio in the range of 10(2). We report fabrication of n-type, p-type or ambipolar Ge NP TFTs at maximum temperatures of 450 °C. For the first time, a circuit using two ambipolar TFTs is demonstrated to function as a NOT gate with an inverter gain of up to 4 which can be operated at room temperature in ambient air.

15.
ACS Appl Mater Interfaces ; 6(15): 12245-51, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25029269

ABSTRACT

Indium-zinc oxide (IZO) films were deposited via flame spray pyrolysis (FSP) by pulsewise shooting a Si/SiO2 substrate directly into the combustion area of the flame. Based on UV-vis measurements of thin-films deposited on glass substrates, the optimal deposition parameters with respect to low haze values and film thicknesses of around 100 nm were determined. Thermal annealing of the deposited films at temperatures between 300 and 700 °C was carried out and staggered bottom gate thin-film transistors (TFT) were fabricated. The thin films were investigated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and room-temperature photoluminescence measurements. The outcome of these investigations lead to two major requirements in order to implement a working TFT: (i) organic residues from the deposition process need to be removed and (ii) the net free charge carrier concentration has to be minimized by controlling the trap states in the semiconductor. The optimal annealing temperature was 300 °C as both requirements are fulfilled best in this case. This leads to field effect transistors with a low hysteresis, a saturation mobility of µSat = 0.1 cm(2)/(V s), a threshold voltage of Vth = -18.9 V, and an Ion/Ioff ratio on the order of 10(7). Depending on thermal treatment, the defect density changes significantly strongly influencing the transfer characteristics of the device.

SELECTION OF CITATIONS
SEARCH DETAIL
...